Skip to main content
Log in

Cloning, comparative characterization of porcine SCAP gene, and identification of its two splice variants

  • Orininal Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Sterol responsive element binding protein (SREBP) cleavage-activating protein (SCAP) is the key regulator of activation of SREBPs, which stimulate most enzymes in cholesterol and lipid synthesis. In order to investigate the molecular basis of lipid metabolism in the pig, a unique model for fat deposition, we isolated and characterized the porcine SCAP. The 4,096-bp full-length porcine SCAP cDNA contains an open reading frame of 3,840 bp. The predicted SCAP protein consists of 1,280 amino acids of 55–92% identity with its vertebrate counterparts. The porcine SCAP gene consists of at least 19 exons and 18 introns, which span over 13 kb of the genome. The porcine SCAP gene was mapped to chromosome 13q21–22 using a porcine-rodent somatic cell hybrid panel. Comparison of SCAP genomic structures from various species revealed intron losses in porcine, Tetraodon and fugu SCAP, and intron gains in cow and chicken SCAP. Moreover, we isolated two novel splicing SCAP variants with 193-bp (variant 2) in-frame deletion from testis and a variant with 291-bp (variant 3) in-frame deletion from liver and muscle, which may affect the function of the porcine SCAP. In conclusion, the intron gains and losses appear to have contributed to the shape of the modern SCAP family. The splice variants detected, first to be reported in any species, may be involved in the particulars of the fat metabolism in the pig. Our data lay foundation for further study of SCAP function in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Birney E, Andrews D, Caccamo M, Chen Y, Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, Down T, Durbin R, Fernandez-Suarez XM, Flicek P, Graf S, Hammond M, Herrero J, Howe K, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Kokocinski F, Kulesha E, London D, Longden I, Melsopp C, Meidl P, Overduin B, Parker A, Proctor G, Prlic A, Rae M, Rios D, Redmond S, Schuster M, Sealy I, Searle S, Severin J, Slater G, Smedley D, Smith J, Stabenau A, Stalker J, Trevanion S, Ureta-Vidal A, Vogel J, White S, Woodwark C, Hubbard TJ (2006) Ensembl 2006. Nucleic Acids Res 34:D556–D561

    Article  PubMed  CAS  Google Scholar 

  • Brambilla G, Cantafora A (2004) Metabolic and cardiovascular disorders in highly inbred lines for intensive pig farming: how animal welfare evaluation could improve the basic knowledge of human obesity. Ann Ist Super Sanita 40:241–244

    PubMed  Google Scholar 

  • Carver EA, Stubbs L (1997) Zooming in on the human–mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Res 7:1123–1137

    PubMed  CAS  Google Scholar 

  • Feiber AL, Rangarajan J, Vaughn JC (2002) The evolution of single-copy Drosophila nuclear 4f-rnp genes: spliceosomal intron losses create polymorphic alleles. J Mol Evol 55:401–413

    Article  PubMed  CAS  Google Scholar 

  • Feramisco JD, Radhakrishnan A, Ikeda Y, Reitz J, Brown MS, Goldstein JL (2005) Intramembrane aspartic acid in SCAP protein governs cholesterol-induced conformational change. Proc Natl Acad Sci USA 102:3242–3247

    Article  PubMed  CAS  Google Scholar 

  • Fink GR (1987) Pseudogenes in yeast? Cell 49:5–6

    Article  PubMed  CAS  Google Scholar 

  • Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, Pinton P, Frelat G, Gellin J (1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36:252–262

    Article  PubMed  CAS  Google Scholar 

  • Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131

    PubMed  CAS  Google Scholar 

  • Hughes AL, Todd BL, Espenshade PJ (2005) SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 25:831–842

    Article  Google Scholar 

  • Jin S, Hu GA, Qian YH, Zhang L, Zhang J, Qiu G, Zeng QT, Gui JF (2005) Identification of one intron loss and phylogenetic evolution of Dfak gene in the Drosophila melanogaster species group. Genetica 125:223–230

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara PE, Labouesse M (2002) The sterol-sensing domain: multiple families, a unique role? Trends Genet 18:193–201

    Article  PubMed  CAS  Google Scholar 

  • Loewen CJ, Levine TP (2002) Cholesterol homeostasis: not until the SCAP lady INSIGs. Curr Biol 12:R779–R781

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Korn BS, Hammer RE, Moon YA, Komuro R, Horton JD, Goldstein JL, Brown MS, Shimomura I (2001) SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev 15:1206–1216

    Article  PubMed  CAS  Google Scholar 

  • Milan D, Hawken R, Cabau C, Leroux S, Genet C, Lahbib Y, Tosser G, Robic A, Hatey F, Alexander L, Beattie C, Schook L, Yerle M, Gellin J (2000) IMpRH server: an RH mapping server available on the web. Bioinformatics 16:558–559

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Hamakubo T, Kodama T, Inazawa J, Emi M (1999) Genomic structure and chromosomal mapping of the human sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) gene. J Hum Genet 44:402–407

    Article  PubMed  CAS  Google Scholar 

  • Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300

    Article  PubMed  CAS  Google Scholar 

  • Nie T, Zhao XL, Qiu H, Xia T, Chen XD, Gan L, Feng SQ, Lei T, Dai MH, Yang ZQ (2005) Sequence analysis and map assignment of pig SREBF2 and ADFP. Anim Genet 36:455–457

    Article  PubMed  CAS  Google Scholar 

  • Nohturfft A, Brown MS, Goldstein JL (1998) Topology of SREBP cleavage-activating protein, a polytopic membrane protein with a sterol-sensing domain. J Biol Chem 273:17243–17250

    Article  PubMed  CAS  Google Scholar 

  • Osborne TF (2001) CREating a SCAP-less liver keeps SREBPs pinned in the ER membrane and prevents increased lipid synthesis in response to low cholesterol and high insulin. Genes Dev 15:1873–1878

    Article  PubMed  CAS  Google Scholar 

  • Qiu H, Xia T, Chen XD, Feng SQ, Gan L, Lei T, Peng Y, Zhang GD, Nie T, Yue GP, Zhao XL, Yang ZQ (2005a) Sequencing and chromosome mapping of pig INSIG 2 and a related pseudogene. Anim Genet 36:188–189

    Article  CAS  Google Scholar 

  • Qiu H, Xia T, Chen XD, Gan L, Feng SQ, Lei T, Dai MH, Yang ZQ (2005b) Characterization of pig INSIG1 and assignment to SSC18. Anim Genet 36:284–286

    Article  CAS  Google Scholar 

  • Rawson RB, DeBose-Boyd R, Goldstein JL, Brown MS (1999) Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. J Biol Chem 274:28549–28556

    Article  PubMed  CAS  Google Scholar 

  • Roy SW, Fedorov A, Gilbert W (2003) Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc Natl Acad Sci USA 100:7158–7162

    Article  PubMed  CAS  Google Scholar 

  • Seegmiller AC, Dobrosotskaya I, Goldstein JL, Ho YK, Brown MS, Rawson RB (2002) The SREBP pathway in Drosophila: regulation by palmitate, not sterols. Dev Cell 2:229–238

    Article  PubMed  CAS  Google Scholar 

  • Wittenburg H, Lammert F, Wang DQ, Churchill GA, Li R, Bouchard G, Carey MC, Paigen B (2002) Interacting QTLs for cholesterol gallstones and gallbladder mucin in AKR and SWR strains of mice. Physiol Genomics 11:67–77

    Google Scholar 

  • Yabe D, Brown MS, Goldstein JL (2002a) Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci USA 99:12753–12758

    Article  CAS  Google Scholar 

  • Yabe D, Xia ZP, Adams CM, Rawson RB (2002b) Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols. Proc Natl Acad Sci USA 99:16672–16677

    Article  CAS  Google Scholar 

  • Yang T, Goldstein JL, Brown MS (2000) Overexpression of membrane domain of SCAP prevents sterols from inhibiting SCAP. SREBP exit from endoplasmic reticulum. J Biol Chem 275:29881–29886

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, Goldstein JL, Brown MS (2002) Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 23:489–500

    Article  Google Scholar 

  • Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie C, Schook L, Milan D, Gellin J (1998) Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82:182–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Leszek Wojnowski (Department of Pharmacology, Johannes Gutenberg University), Dr. Sandra Dieni and Dr. Shanting Zhao (Institute of Anatomy and Cell biology, Freiburg University) and two anonymous reviewers for critically reading and helpful comments on the manuscript. We are grateful to Dr. Martine Yerle and Dr. Denis Milan (INRA, Castanet-Tolosan, France) for kindly providing the RH panel. This work was supported by the grants from General Program and Key Program of National Natural Science Foundation and 863 Program of China to Dr. Zaiqing Yang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaiqing Yang.

Additional information

Communicated by P. Ruiz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, H., Xia, T., Chen, X. et al. Cloning, comparative characterization of porcine SCAP gene, and identification of its two splice variants. Mol Genet Genomics 276, 187–196 (2006). https://doi.org/10.1007/s00438-006-0134-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0134-8

Keywords

Navigation