Skip to main content
Log in

Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an omega-aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase. Characterization of the omega-aminotransferase

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The biosynthesis and catabolism of lysine in Penicillium chrysogenum is of great interest because these pathways provide 2-aminoadipic acid, a precursor of the tripeptide δ-L-2-aminoadipyl-L-cysteinyl-D-valine that is an intermediate in penicillin biosynthesis. In vivo conversion of labelled L-lysine into two different intermediates was demonstrated by HPLC analysis of the intracellular amino acid pool. L-lysine is catabolized to 2-aminoadipic acid by an ω-aminotransferase and to saccharopine by a lysine-2-ketoglutarate reductase. In lysine-containing medium both activities were expressed at high levels, but the ω-aminotransferase activity, in particular, decreased sharply when ammonium was used as the nitrogen source. The ω-aminotransferase was partially purified, and found to accept L-lysine, L-ornithine and, to a lesser extent, N-acetyl-L-lysine as amino-group donors. 2-Ketoglutarate, 2-ketoadipate and, to a lesser extent, pyruvate served as amino group acceptors. This pattern suggests that this enzyme, previously designated as a lysine-6-aminotransferase, is actually an ω-aminotransferase. When 2-ketoadipate is used as substrate, the reaction product is 2-aminoadipic acid, which contributes to the pool of this intermediate available for penicillin biosynthesis. The N-terminal end of the purified 45-kDa ω-aminotransferase was sequenced and was found to be similar to the corresponding segment of the OAT1 protein of Emericella (Aspergillus) nidulans. This information was used to clone the gene encoding this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aharonowitz Y et al (1993) Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase, the multienzyme integrating the four primary reactions in beta-lactam biosynthesis, as a model peptide synthetase. Biotechnology 11:807–810

    Article  PubMed  CAS  Google Scholar 

  • Aharonowitz Y, Cohen G, Martín JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organisation, regulation, and evolution. Annu Rev Microbiol 46:461–495

    Article  PubMed  CAS  Google Scholar 

  • Albrecht AM, Vogel HJ (1964) Acetylornithine δ-transaminase. Partial purification and repression behavior. J Biol Chem 239:1872–1876

    PubMed  CAS  Google Scholar 

  • Arruda P, Kemper EL, Papes F, Leite A (2000) Regulation of lysine catabolism in higher plants. Trends Plant Sci 5:324–330

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos O, Casqueiro J, Fierro F, Hijarrubia MJ, Gutiérrez S, Martín JF (1999) Characterization and lysine control of expression of the lys1 gene of Penicillium chrysogenum encoding homocitrate synthase. Gene 226:51–59

    Article  PubMed  Google Scholar 

  • Bañuelos O, Casqueiro J, Gutiérrez S, Martín JF (2000) Overexpression of the lys1 gene in Penicillium chrysogenum: Homocitrate synthase levels, α-aminoadipic acid pool and penicillin production. Appl Microbiol Biotechnol 54:69–77

    Article  PubMed  Google Scholar 

  • Bhattacharjee JK (1985) α-Aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit Rev Microbiol 12:131–151

    PubMed  CAS  Google Scholar 

  • Casqueiro J, Gutiérrez S, Bañuelos O, Fierro F, Velasco J, Martín JF (1998) Characterization of the lys2 gene of Penicillium chrysogenum encoding α-aminoadipic acid reductase. Mol Gen Genet 259:549–556

    Article  PubMed  CAS  Google Scholar 

  • Casqueiro J, Gutiérrez S, Bañuelos O, Hijarrubia MJ, Martín JF (1999) Gene targeting in Penicillium chrysogenum: Disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188

    PubMed  CAS  Google Scholar 

  • Chang YF, Adams E (1971) Induction of separate catabolic pathways for L- and D-lysine in Pseudomonas putida. Biochem Biophys Acta 45:570–576

    CAS  Google Scholar 

  • Chang YF, Adams E (1974) D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. J Bacteriol 117:753–764

    PubMed  CAS  Google Scholar 

  • Coque JJR, Liras P, Láiz L, Martín JF (1991) A gene encoding lysine 6-aminotransferase, which forms the β-lactam precursor α-aminoadipic acid, is located in the cluster of cephamycin biosynthetic genes in Nocardia lactamdurans. J Bacteriol 173:6258–6264

    PubMed  CAS  Google Scholar 

  • Díez B, Gutiérrez S, Barredo JL, van Solingen P, van der Voort Lucia HM, Martín JF (1990) The cluster of penicillin biosynthetic genes. J Biol Chem 265:16358–16365

    PubMed  Google Scholar 

  • Diez B, Mellado E, Rodríguez M, Bernasconi E, Barredo JL (1999) The NADP-dependent glutamate dehydrogenase gene from Penicillium chrysogenum and the construction of expression vectors for filamentous fungi. Appl Microbiol Biotechnol 52:196–207

    Article  PubMed  CAS  Google Scholar 

  • Dzikowska A, Swianiewicz M, Talarczyk A, Wisniewska M, Goras M, Scazzocchio C, Weglenski P (1999) Cloning, characterisation and regulation of the ornithine transaminase (otaA) gene of Aspergillus nidulans. Curr Genet 35:118–126

    Article  PubMed  CAS  Google Scholar 

  • Esmahan C, Álvarez E, Montenegro E, Martín JF (1994) Catabolism of lysine in Penicillium chrysogenum leads to formation of a-aminoadipic acid, a precursor of penicillin biosynthesis. Appl Enviroment Microbiol 60:1705–1710

    CAS  Google Scholar 

  • Fangmeier N, Leistner E (1980) A 15N NMR study on D-lysine metebolism in Neurospora crassa. J Biol Chem 255:10205–10209

    PubMed  CAS  Google Scholar 

  • Fierro F, Barredo JL, Díez B, Gutiérrez S, Fernández FJ, Martín JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92:6200–6204

    Article  PubMed  CAS  Google Scholar 

  • Fothergill JC, Guest JR (1977) Catabolism of L-lysine by Pseudomonas aeruginosa. J Gen Microbiol 99:139–155

    PubMed  CAS  Google Scholar 

  • Friedrich GC, Demain AL (1978) Uptake and metabolism of (-aminoadipate by Penicillium chrysogenum. Arch Microbiol 119:43–47

    Article  PubMed  CAS  Google Scholar 

  • Hijarrubia MJ, Aparicio JF, Martín JF (2002) Nitrate regulation of α-Aminoadipate reductase formation and lysine inhibition of its activity in Penicillium chrysogenum and Acremonium chrysogenum. Appl Microb Biotechnol 59:270–277

    Article  CAS  Google Scholar 

  • Hönlinger C, Kubicek CP (1989) Regulation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the alpha-aminoadipate pool size. FEMS Microbiol Lett 53:71–75

    Article  PubMed  Google Scholar 

  • Kern BA, Hendlin D, Inamine E (1980) L-lysine ε-aminotransferase involved in cephamycin C synthesis in Streptomyces luctamdurans. Antimicrob Agents Chemoter 17:679–685

    CAS  Google Scholar 

  • Kinzel JJ, Winston MK, Bhattacharjee JK (1983) Role of L-lysine-α-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis. J Bacteriol 155:417–419

    PubMed  CAS  Google Scholar 

  • Madduri K, Shapiro S, DeMarco AC, White RL, Stuttard C, Vining C (1991) Lysine catabolism and α-Aminoadipate synthesis in Streptomyces clavuligerus. Appl Microbiol Biotechnol 35:358–363

    Article  CAS  Google Scholar 

  • Markovitz PJ, Chuang DT, Cox RP (1984) Familial hyperlysinemias : purification and characterization of the bi-functional aminoadipic acid semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. J Biol Chem 259:11643–11646

    PubMed  CAS  Google Scholar 

  • Martín JF (1998) New aspects of genes and enzymes for ß-lactam antibiotic biosynthesis. Appl Microbiol Biotechnol 50:1–15

    Article  PubMed  Google Scholar 

  • Martín JF (2000) α-Aminoadipyl-cysteinyl-valine synthetases in ßlactam producing organisms. From Abraham’s discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot 53:1008–1021

    PubMed  Google Scholar 

  • Naranjo L et al (2005)

  • Naranjo L, Martín de Valmaseda E, Bañuelos O, López P, Riaño J, Casqueiro J, Martín JF (2001) Conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase. J Bacteriol 183:7165–7172

    Article  PubMed  CAS  Google Scholar 

  • Nishida H, Nishiyama M (2000) What is characteristic of fungal lysine synthesis through the α-Aminoadipate pathway? J Mol Evol 51:299–302

    PubMed  CAS  Google Scholar 

  • Novak J, Kopecky J, Vanek Z (1997) Nitrogen source regulates expression of alanine dehydrogenase isoenzymes in Streptomyces avermitilis in a chemically defined medium. Can J Microbiol 43:189–193

    Article  CAS  Google Scholar 

  • Papes F, Kemper EL, Cord-Neto G, Langone F, Arruda P (1999) Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse. Biochem J 344:555–563

    Article  PubMed  CAS  Google Scholar 

  • Perez-Llarena FJ, Rodríguez-García A, Enguita FJ, Martín JF, Liras P (1998) The pcd gene encoding piperideine-6-carboxylate dehydrogenase involved in biosynthesis of α-aminoadipic acid is located in the cephamycin cluster of Streptomyces clavuligerus. J Bacteriol 180:4753–4756

    PubMed  CAS  Google Scholar 

  • Schmidt H, Bode R, Birnbaum D (1988) A novel enzyme, L-lysine:pyruvate aminotransferase, catalyses the first step of lysine catabolism in Pichia guilliermondii. FEMS Microbiol Lett 49:203–206

    Article  CAS  Google Scholar 

  • Shapiro S (1989) Nitrogen assimilation in actinomycetes and the influence of nitrogen nutrition on actinomycete secondary metabolism. In: Shapiro S (ed) Regulation of secondary metabolism in actinoycetes. CRC Press, Boca Raton, pp 135–211

    Google Scholar 

  • Sim KL, Perry D (1997) Analysis of swainsonine and its early metabolic precursors in cultures of Metarhizium anisopliae. Glycoconj J 14:661–668

    Article  PubMed  CAS  Google Scholar 

  • Soda K, Misono H (1971) L-lysine-a-ketoglutarate aminotransferase. Methods Enzymol 17B:222–228

    Article  CAS  Google Scholar 

  • Soda K, Misono H, Yamamoto T (1968) L-Lysine:alpha-ketoglutarate aminotransferase. I. Identification of a product, delta-1-piperideine-6-carboxylic acid. Biochemistry 7:4102–4109

    Article  PubMed  CAS  Google Scholar 

  • Tanizawa K, Yoshimura T, Asada Y, Sawada S, Misono H, Soda K (1982) Stereochemistry of proton abstraction catalyzed by lysine and ornithine ω-aminotransferases. Biochemistry 21:1104–1108

    Article  PubMed  CAS  Google Scholar 

  • Wade M, Thomson DM, Miflin BJ (1980) Saccharopine: an intermediate of L-lysine biosynthesis and degradation in Pyriculia oryzae. J Gen Microbiol 120: 11–20

    CAS  Google Scholar 

  • Yonaha K, Nishie M, Aibara S (1992) The primary structure of w-amino acid: pyruvate aminotransferase. J Biol Chem 267:12506–12510

    PubMed  CAS  Google Scholar 

  • Zabriskie TM, Jackson MD (2000) Lysine biosynthesis and metabolism in fungi. Nat Prod Rep 17:85–97

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Tang G, Galili G (2000) Characterization of the two saccharopine dehydrogenase isozymes of lysine catabolism encoded by the single composite AtLKR/SDH locus of Arabidopsis. Plant Physiol 124:1363–1371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the CICYT (BIO2000-1729-C02-02 and FIT-01000-2001-130). L. Naranjo was a Fellow of the AECI Programme (Ministerio de Asuntos Exteriores, Madrid)

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valmaseda, E.M.M.d., Campoy, S., Naranjo, L. et al. Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an omega-aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase. Characterization of the omega-aminotransferase. Mol Genet Genomics 274, 272–282 (2005). https://doi.org/10.1007/s00438-005-0018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-0018-3

Keywords

Navigation