Skip to main content
Log in

Molecular analysis of two cytochrome P450 monooxygenase genes required for paxilline biosynthesis in Penicillium paxilli, and effects of paxilline intermediates on mammalian maxi-K ion channels

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The gene cluster required for paxilline biosynthesis in Penicillium paxilli contains two cytochrome P450 monooxygenase genes, paxP and paxQ. The primary sequences of both proteins are very similar to those of proposed cytochrome P450 monooxygenases from other filamentous fungi, and contain several conserved motifs, including that for a haem-binding site. Alignment of these sequences with mammalian and bacterial P450 enzymes of known 3-D structure predicts that there is also considerable conservation at the level of secondary structure. Deletion of paxP and paxQ results in mutant strains that accumulate paspaline and 13-desoxypaxilline, respectively. These results confirm that paxP and paxQ are essential for paxilline biosynthesis and that paspaline and 13-desoxypaxilline are the most likely substrates for the corresponding enzymes. Chemical complementation of paxilline biosynthesis in paxG (geranygeranyl diphosphate synthase) and paxP, but not paxQ, mutants by the external addition of 13-desoxypaxilline confirms that PaxG and PaxP precede PaxQ, and are functionally part of the same biosynthetic pathway. A pathway for the biosynthesis of paxilline is proposed on the basis of these and earlier results. Electrophysiological experiments demonstrated that 13-desoxypaxilline is a weak inhibitor of mammalian maxi-K channels (Ki=730 nM) compared to paxilline (Ki=30 nM), indicating that the C-13 OH group of paxilline is crucial for the biological activity of this tremorgenic mycotoxin. Paspaline is essentially inactive as a channel blocker, causing only slight inhibition at concentrations up to 1 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A–C.
Fig. 4A, B.
Fig. 5A–D.
Fig. 6A–C.
Fig. 7A–C.
Fig. 8.

Similar content being viewed by others

References

  • Acklin W, Weibel F, Arigoni D (1977) Zur Biosynthese von Paspalin und verwandten Metaboliten aus Claviceps paspali. Chimia 31:63

    Google Scholar 

  • Al-Samarrai TH, Schmid J (2000) A simple method for extraction of fungal genomic DNA. Lett Appl Microbiol 30:53–56

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Bairoch A, Bucher P, Hofmann K (1997) The PROSITE database: its status in 1997. Nucleic Acids Res 25:217–221

    CAS  PubMed  Google Scholar 

  • Belofsky GN, Gloer JB, Wicklow DT, Dowd PF (1995) Antiinsectan alkaloids: shearinines A–C and a new paxilline derivative from the ascostromata of Eupenicillium shearii. Tetrahedron 51:3959–3968

    Article  CAS  Google Scholar 

  • Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques 5:376–378

    CAS  Google Scholar 

  • Byrd AD, Schardl CL, Songlin PJ, Mogen KL, Siegel MR (1990) The β-tubulin gene of Epichloë typhina from perennial ryegrass ( Lolium perenne). Curr Genet 18:347–354

    CAS  PubMed  Google Scholar 

  • Byrne KM, Smith SK, Ondeyka JG (2002) Biosynthesis of nodulisporic acid A: precursor studies. J Chem Soc Chem Commun 124:7055–7060

    Article  CAS  Google Scholar 

  • Cane DE, Walsh CT, Khosla C (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:63–68

    Article  CAS  PubMed  Google Scholar 

  • Cole RJ, Kirksey JW, Wells JM (1974) A new tremorgenic metabolite from Penicillium paxilli. Can J Microbiol 20:1159–1162

    Google Scholar 

  • Cosme J, Johnson EF (2000) Engineering microsomal cytochrome P450 2C5 to be a soluble, monomeric enzyme. Mutations that alter aggregation, phospholipid dependence of catalysis, and membrane binding. J Biol Chem 275:2545–2553

    Article  CAS  PubMed  Google Scholar 

  • De Jesus AE, Gorst-Allman CP, Steyn PS, van Heerden FR, Vleggar R, Wessels PL, Hull WE (1983) Tremorogenic mycotoxins from Penicillium crustosum. Biosynthesis of Penitrem A. J Chem Soc Perkin Trans I 1863–1868

  • Degtyarenko KN (1995) Structural domains of P450-containing monooxygenase systems. Protein Eng 8:737–747

    CAS  PubMed  Google Scholar 

  • Deirdre A, Scadden J, Smith CWJ (1995) Interactions between the terminal bases of mammalian introns are retained in inosine-containing mRNAs. EMBO J 14:3236–3246

    CAS  PubMed  Google Scholar 

  • Engelman DM, Steitz TA, Goldman A (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem 15:321–353

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AVB, Glass NL (1995) PCR from fungal spores after microwave treatment. Fungal Genet News 25–26

  • Fischer RT, Stam SH, Johnson PR, Ko SS, Magolda RL, Gaylor JL, Trzaskos JM (1989) Mechanistic studies of lanosterol 14 alpha-methyl demethylase: substrate requirements for the component reactions catalysed by a single P-450 isozyme. J Lipid Res 30:1621–1632

    CAS  PubMed  Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002

    PubMed  Google Scholar 

  • Garnier J, Gibrat J-F, Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. Meth Enzymol 266:540–553

    CAS  PubMed  Google Scholar 

  • Gatenby WA, Munday-Finch SC, Wilkins AL, Miles CO (1999) Terpendole M, a novel indole-diterpenoid isolated from Lolium perenne infected with the endophytic fungus Neotyphodium lolii. J Agric Food Chem 47:1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Giangiacomo KM, Fremont V, Mullmann TJ, Hanner M, Cox RH, Garcia ML (2000) Interaction of charybdotoxin S10A with single maxi-K channels: kinetics of blockage depend on the presence of the b1 subunit. Biochemistry 39:6115–6122

    Article  CAS  PubMed  Google Scholar 

  • Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83–90

    CAS  PubMed  Google Scholar 

  • Graham-Lorence SE, Peterson JA (1996) Structural alignments of P450 s and extrapolations to the unknown. Methods Enzymol 272:315–326

    CAS  PubMed  Google Scholar 

  • Gribskov M, Burgess RR, Devereux J (1986) PEPPLOT, a protein secondary structure analysis program for the UWGCG sequence analysis software package. Nucleic Acids Res 14:327–334

    PubMed  Google Scholar 

  • Guex N, Diemand A, Peitsch MC, Schwede T (2002) SwissPDB Viewer. http://www.expasy.ch/spdbv/

  • Gurr SJ, Unkles SE, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL Press, London, pp 93–139

  • Hamill OP, Marty A, Neher E, Sakman B, Sigworth FJ (1981) Improved patch clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Archiv 391:85–100

    CAS  PubMed  Google Scholar 

  • Hanner M, Schmalhofer WA, Munujos P, Knaus H-G, Kaczorowski GJ, Garcia ML (1997) The β-subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc Nat Acad Sci USA 94:2853–2858

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98:2065–2070

    CAS  PubMed  Google Scholar 

  • Higgins D, Thompson JN, Gibson TJ, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Huang X-H, Tomoda H, Nishida H, Masuma R, Omura S (1995) Terpendoles, novel ACAT inhibitors produced by Albophoma yamanashiensis. I. Production, isolation and biological properties. J Antibiotics 48:1–4

    CAS  Google Scholar 

  • Ichinose H, Wariishi H, Tanaka H (2002) Identification and characterization of novel cytochrome P450 genes from the white-rot basidiomycete, Coriolus versicolor. Appl Microbiol Biotechnol 58:97–105

    Article  Google Scholar 

  • Itoh Y, Johnson R, Scott B (1994) Integrative transformation of the mycotoxin-producing fungus, Penicillium paxilli. Curr Genet 25:508–513

    CAS  PubMed  Google Scholar 

  • Jones DT (1999a) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287:797–815

    Article  CAS  PubMed  Google Scholar 

  • Jones DT (1999b) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    CAS  PubMed  Google Scholar 

  • Knaus H-G, McManus OB, Lee SH, Schmalhofer WA, Garcia-Calvo M, Helms LMH, Sanchez M, Giangiacomo K, Reuben JP, Smith AB, Kaczorowski GJ, Garcia ML (1994) Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated channels. Biochemistry 33:5819–5828

    CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    CAS  PubMed  Google Scholar 

  • Laakso JA, Gloer JB, Wicklow DT, Dowd PF (1992) Sulpinines A-C and secopenitrem B: new antiinsectan metabolites from the sclerotia of Aspergillus sulphureus. J Org Chem 57:2066–2071

    CAS  Google Scholar 

  • Laws I, Mantle PG (1989) Experimental constraints in the study of the biosynthesis of indole alkaloids in fungi. J Gen Microbiol 135:2679–2692

    CAS  Google Scholar 

  • Li C, Gloer JB, Wicklow DT, Dowd PF (2002) Thiersinines A and B: novel antiinsectan indole diterpenoids from a new fungicolous Penicillium species (NRRL 28147). Org Lett 4:3095–3098

    Article  CAS  PubMed  Google Scholar 

  • Mantle PG, Weedon CM (1994) Biosynthesis and transformation of tremorgenic indole-diterpenoids by Penicillium paxilli and Acremonium lolii. Phytochemistry 36:1209–1217

    Article  CAS  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  • McManus OB, Helms LMH, Pallanck L, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the β-subunit of high-conductance calcium-activated potassium channels. Neuron 14:645–650

    PubMed  Google Scholar 

  • Mende K, Homann V, Tudzynski B (1997) The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: isolation and expression. Mol Gen Genet 255:96–105

    CAS  PubMed  Google Scholar 

  • Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Res 10:459–472

    CAS  PubMed  Google Scholar 

  • Munday-Finch SC, Wilkins AL, Miles CO (1996) Isolation of paspaline B, an indole-diterpenoid from Penicillium paxilli. Phytochemistry 41:327–332

    Article  CAS  Google Scholar 

  • Murtazina D, Puchkaev AV, Schein CH, Oezguen N, Braun W, Nanavati A, Pikuleva IA (2002) Membrane-protein interactions contribute to efficient 27-hydroxylation of cholesterol by mitochondrial cytochrome P450 27A1. J Biol Chem 277:37582–37589

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493

    CAS  Google Scholar 

  • Ondeyka JG, Helms GL, Hensens OD, Goetz MA, Zink DL, Tsipouras A, Shoop WL, Slayton L, Dombrowski AW, Polishook JD, Ostlind DA, Tsou NN, Ball RG, Singh SB (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulisporum sp. isolation, structure determination and chemical transformations. J Chem Soc Chem Commun 119:8809–8816

    CAS  Google Scholar 

  • Parker R, Siliciano PG (1993) Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron. Nature 361:660–662

    CAS  PubMed  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    CAS  PubMed  Google Scholar 

  • Pendurthi UR, Lamb JG, Nguyen N, Johnson EF, Tukey RH (1990) Characterization of the CYP2C5 gene in 21L III/J rabbits. Allelic variation affects the expression of P450IIC5. J Biol Chem 265:14662–14668

    PubMed  Google Scholar 

  • Rojas MC, Hedden P, Gaskin P, Tudzynski B (2001) The P450–1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc Natl Acad Sci USA 98:5838–5843

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL (1999) Structure of a cytochrome P450-redox partner electron-transfer complex. Proc Natl Acad Sci USA 96:1863–1868

    CAS  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    CAS  PubMed  Google Scholar 

  • Steyn PS, Vleggaar R (1985) Tremorgenic mycotoxins. Prog Chem Organic Natural Products 48:1–80

    CAS  Google Scholar 

  • Tomoda H, Tabata N, Yang D, Takayanagi H, Omura S (1995) Terpendoles, novel ACAT inhibitors produced by Albophoma yamanashiensis. III. Production, isolation and structure elucidation of new components. J Antibiotics 48:793–804

    CAS  Google Scholar 

  • Trzaskos J, Kawata S, Gaylor JL (1986) Microsomal enzymes of cholesterol biosynthesis. Purification of lanosterol 14 alpha-methyl demethylase cytochrome P-450 from hepatic microsomes. J Biol Chem 261:14651–14657

    CAS  PubMed  Google Scholar 

  • Tudzynski B, Hölter K (1998) Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol 25:157–170

    CAS  PubMed  Google Scholar 

  • Tudzynski B, Hedden P, Carrera E, Gaskin P (2001) The P450-4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway. Appl Environ Microbiol 67:3514–3522

    CAS  PubMed  Google Scholar 

  • Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y, McKenna E, Austin CP, Bennett PB, Swanson R (2000) Cloning and functional expression of two families of β-subunits of the large conductance calcium-activated K+ channel. J Biol Chem 275:23211–23218

    Article  CAS  PubMed  Google Scholar 

  • Unkles SE (1992) Gene organisation in industrial filamentous fungi. In: Kinghorn JR, Turner G (eds) Applied molecular genetics of filamentous fungi. Blackie, London, pp 28–53

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    PubMed  Google Scholar 

  • Vollmer SJ, Yanofsky C (1986) Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci USA 83:4869–4873

    CAS  Google Scholar 

  • Weedon CM, Mantle PG (1987) Paxilline biosynthesis by Acremonium loliae; a step towards defining the origin of lolitrem neurotoxins. Phytochemistry 26:969–971

    CAS  Google Scholar 

  • Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131

    CAS  PubMed  Google Scholar 

  • Yeom H, Sligar SG, Li H, Poulos TL, Fulco AJ (1995) The role of Thr268 in oxygen activation of cytochrome P450BM-3. Biochemistry 34:14733–14740

    CAS  PubMed  Google Scholar 

  • Yoder OC (1988) Cochliobolus heterostrophus, cause of southern corn leaf blight. Adv Plant Pathol 6:93–112

    Google Scholar 

  • Young C, Itoh Y, Johnson R, Garthwaite I, Miles CO, Munday-Finch SC, Scott B (1998) Paxilline-negative mutants of Penicillium paxilli generated by heterologous and homologous plasmid integration. Curr Genet 33:368–377

    CAS  PubMed  Google Scholar 

  • Young CA, McMillan L, Telfer E, Scott B (2001) Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. Mol Microbiol 39:754–764

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants MAU501 and MAU804 from the New Zealand Foundation for Research, Science and Technology, and a grant (MAU010) from the Royal Society of New Zealand Marsden Fund

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Scott.

Additional information

Communicated by E. Cerdà-Olmedo

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillan, L.K., Carr, R.L., Young, C.A. et al. Molecular analysis of two cytochrome P450 monooxygenase genes required for paxilline biosynthesis in Penicillium paxilli, and effects of paxilline intermediates on mammalian maxi-K ion channels. Mol Gen Genomics 270, 9–23 (2003). https://doi.org/10.1007/s00438-003-0887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0887-2

Keywords

Navigation