Skip to main content
Log in

Characterization of HemY-type protoporphyrinogen IX oxidase genes from cyanobacteria and their functioning in transgenic Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

We investigated the functions of two cyanobacterial HemY protoporphyrinogen IX oxidase (PPO) genes with in vitro and in vivo assays and evaluated their applicability as resistance traits to PPO-inhibiting herbicides.

Abstract

We isolated HemY-type protoporphyrinogen IX oxidase (PPO) genes from cyanobacteria, OnPPO gene from Oscillatoria nigro-viridis PCC7112 and HaPPO gene from Halothece sp. PCC7418. The alignment of amino acid sequences as well as phylogenetic analyses conducted showed that OnPPO and HaPPO are classified as HemY-type PPO and are more closely related to plastidic PPOs than to mitochondrial PPOs. The PPO-deficient Escherichia coli BT3 strain, which requires heme supplementation, could obtain normal growth in the absence of heme supplementation when complemented with OnPPO and HaPPO. The enzyme assays of OnPPO, HaPPO, and Arabidopsis thaliana PPO1 (AtPPO1) proteins each revealed different kinetic properties in terms of catalytic efficiency, substrate affinity, and the degree of inhibition by PPO inhibitors. In particular, the catalytic efficiencies (kcat/Km) of OnPPO and HaPPO were approximately twofold higher than that of AtPPO1. The elution profiles of all three PPOs, acquired by size-exclusion chromatography, showed only a single peak with a molecular weight of approximately 52–54 kDa, which corresponds to a monomeric form. Moreover, functional complementation with OnPPO and HaPPO in AtPPO1-silenced Arabidopsis resulted in restored growth, whereas AtPPO1-silenced wild type Arabidopsis suffered necrotic death. In addition, we observed that overexpression of OnPPO and HaPPO in Arabidopsis conferred resistance to the PPO-inhibiting herbicides tiafenacil and saflufenacil. These results suggest that two HemY-type PPOs of cyanobacteria can functionally substitute for plastidic PPO activity in Arabidopsis and can enhance resistance to tiafenacil and saflufenacil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An G, Ebert P, Mitra A, Ha S (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp 1–19

    Google Scholar 

  • Arnould S, Takahashi M, Camadro JM (1998) Stability of recombinant yeast protoporphyrinogen oxidase: effects of diphenyl ether-type herbicides and diphenyleneiodonium. Biochemistry 37:12818–12828

    Article  CAS  PubMed  Google Scholar 

  • Ashigh J, Hall JC (2010) Bases for interactions between saflufenacil and glyphosate in plants. J Agric Food Chem 58:7335–7343

    Article  CAS  PubMed  Google Scholar 

  • Boynton TO, Daugherty LE, Dailey TA, Dailey HA (2009) Identification of Escherichia coli HemG as a novel, menadione-dependent flavodoxin with protoporphyrinogen oxidase activity. Biochemistry 48:6705–6711

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busi R, Vila-Aiub MM, Beckie HJ, Gaines TA, Goggin DE, Kaundun SS, Lacoste M, Neve P, Nissen SJ, Norsworthy JK, Renton M, Shaner DL, Tranel PJ, Wright T, Yu Q, Powles SB (2013) Herbicide-resistant weeds: from research and knowledge to future needs. Evol Appl 6:1218–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Castenholz RW, Wilmotte A, Herdman M, Rippka R, Waterbury JB, Iteman I, Hoffmann L (2001) Phylum BX. Cyanobacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual® of systematic bacteriology. Springer, New York, pp 473–599

    Chapter  Google Scholar 

  • Che FS, Watanabe N, Iwano M, Inokuchi H, Takayama S, Yoshida S, Isogai A (2000) Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. Plant Physiol 124:59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Corrigall AV, Siziba KB, Maneli MH, Shephard EG, Ziman M, Dailey TA, Dailey HA, Kirsch RE, Meissner PN (1998) Purification of and kinetic studies on a cloned protoporphyrinogen oxidase from the aerobic bacterium Bacillus subtilis. Arch Biochem Biophys 358:251–256

    Article  CAS  PubMed  Google Scholar 

  • Dailey HA, Dailey TA (1996) Protoporphyrinogen oxidase of Myxococcus xanthus. Expression, purification, and characterization of the cloned enzyme. J Biol Chem 271:8714–8718

    Article  CAS  PubMed  Google Scholar 

  • Dailey HA, Karr SW (1987) Purification and characterization of murine protoporphyrinogen oxidase. Biochemistry 26:2697–2701

    Article  CAS  PubMed  Google Scholar 

  • Dayan FE, Duke SO (1997) Phytotoxicity of protoporphyrinogen oxidase inhibitors: phenomenology, mode of action and mechanisms of resistance. In: Roe RM, Burton JD, Kuhr RJ (eds) Herbicide activity: toxicology, biochemistry, and molecular biology. IOS Press, Amsterdam, pp 11–36

    Google Scholar 

  • Duke SO, Lydon J, Becerril JM, Sherman TD, Lehnen LP, Matsumoto H (1991) Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 39:465–473

    Article  CAS  Google Scholar 

  • Dym O, Eisenberg D (2001) Sequence-structure analysis of FAD-containing proteins. Protein Sci 10:1712–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira GC, Dailey HA (1988) Mouse protoporphyrinogen oxidase. Kinetic parameters and demonstration of inhibition by bilirubin. Biochem J 250:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green JM, Owen MD (2011) Herbicide resistant crops: utilities and limitations for herbicide resistant weed management. J Agric Food Chem 59:5819–5829

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K, Niggeweg R, Christiansen N, Looser R, Ehrhardt T (2010) The herbicide saflufenacil (Kixor™) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci 58:1–9

    Article  CAS  Google Scholar 

  • Ha SB, Lee SB, Lee Y, Yang K, Lee N, Jang SM, Chung JS, Jung S, Kim YS, Wi SG, Back K (2003) The plastidic Arabidopsis protoporphyrinogen IX oxidase gene, with or without the transit sequence, confers resistance to the diphenyl ether herbicide in rice. Plant Cell Environ 27:79–88

    Article  Google Scholar 

  • Hao GF, Zuo Y, Yang SG, Yang GF (2011) Protoporphyrinogen oxidase inhibitor: an ideal target for herbicide discovery. Chimia 65:961–969

    Article  CAS  PubMed  Google Scholar 

  • Hao GF, Tan Y, Yang SG, Wang ZF, Zhan CG, Xi Z, Yang GF (2013) Computational and experimental insights into the mechanism of substrate recognition and feedback inhibition of protoporphyrinogen oxidase. PLoS ONE 8:e69198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heap I, Duke SO (2018) Overview of glyphosate-resistant weeds worldwide. Pest Manag Sci 74:1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Heinemann IU, Diekmann N, Masoumi A, Koch M, Messerschmidt A, Jahn M, Jahn D (2007) Functional definition of the tobacco protoporphyrinogen IX oxidase substrate-binding site. Biochem J 402:575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang LL, Tan Y, Zhu XL, Wang ZF, Zuo Y, Chen Q, Xi Z, Yang GF (2010) Design, synthesis, and 3D-QSAR analysis of novel 1,3,4-oxadiazol-2(3H)-ones as protoporphyrinogen oxidase inhibitors. J Agric Food Chem 58:2643–2651

    Article  CAS  PubMed  Google Scholar 

  • Jung HI, Kuk YI (2007) Resistance mechanisms in protoporphyrinogen oxidase (PROTOX) inhibitor-resistant transgenic rice. J Plant Biol 50:586–594

    Article  CAS  Google Scholar 

  • Kato K, Tanaka R, Sano S, Tanaka A, Hosaka H (2010) Identification of a gene essential for protoporphyrinogen IX oxidase activity in the cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 107:16649–16654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Masuda T, Tajima N, Wada H, Sato N (2014) Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX. Genome Biol Evol 6:2141–2155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch M, Breithaupt C, Kiefersauer R, Freigang J, Huber R, Messerschmidt A (2004) Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J 23:1720–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Lee SB, Chung JS, Han SU, Han O, Guh JO, Jeon JS, An G, Back K (2000) Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Plant Cell Physiol 41:743–749

    Article  CAS  PubMed  Google Scholar 

  • Lermontova I, Grimm B (2000) Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol 122:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lermontova I, Kruse E, Mock H-P, Grimm B (1997) Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94:8895–8900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Volrath SL, Nicholl DB, Chilcott CE, Johnson MA, Ward ER, Law MD (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narita S, Taketani S, Inokuchi H (1999) Oxidation of protoporphyrinogen IX in Escherichia coli is mediated by the aerobic coproporphyrinogen oxidase. Mol Gen Genet 261:1012–1020

    Article  CAS  PubMed  Google Scholar 

  • Oborník M, Green BR (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22:2343–2353

    Article  PubMed  CAS  Google Scholar 

  • Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MA (2016) Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. Plant J 85:148–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Ahn YO, Nam JW, Hong MK, Song N, Kim T, Yu GH, Sung SK (2018) Biochemical and physiological mode of action of tiafenacil, a new protoporphyrinogen IX oxidase-inhibiting herbicide. Pestic Biochem Physiol 152:38–44

    Article  CAS  PubMed  Google Scholar 

  • Patzoldt WL, Hager AG, McCormick JS, Tranel PJ (2006) A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci USA 103:12329–12334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Tan Y, Wang L, Wang Z, Wang B, Wen X, Yang G, Xi Z, Shen Y (2011) Structural insight into human variegate porphyria disease. FASEB J 25:653–664

    Article  CAS  PubMed  Google Scholar 

  • Ryu JY, Song JY, Chung Y, Park YM, Chow WS, Park YI (2010) Transcript accumulation of carotenoid biosynthesis genes in the cyanobacterium Synechocystis sp. PCC6803 during the dark-to-light transition is mediated by photosynthetic electron transport. Plant Biotechnol Rep 4:149–155

    Article  Google Scholar 

  • Salas RA, Burgos NR, Tranel PJ, Singh S, Glasgow L, Scott RC, Nichols RL (2016) Resistance to PPO-inhibiting herbicide in Palmer amaranth from Arkansas. Pest Manag Sci 72:864–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skotnicová P, Sobotka R, Shepherd M, Hájek J, Hrouzek P, Tichý M (2018) The cyanobacterial protoporphyrinogen oxidase HemJ is a new b-type heme protein functionally coupled with coproporphyrinogen III oxidase. J Biol Chem 29:12394–12404

    Article  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  CAS  PubMed  Google Scholar 

  • Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs L (2019) Effects of herbicide on non-target microorganisms: towards a new class of biomarkers? Sci Total Environ 684:314–325

    Article  CAS  PubMed  Google Scholar 

  • Very Simple KM Vmax Tool Kit (2018) http://www.ic50.tk/kmvmax.html

  • Vick JE, Johnson ET, Choudhary S, Bloch SE, Lopez-Gallego F, Srivastava P, Tikh IB, Wawrzyn GT, Schmidt-Dannert C (2011) Optimized compatible set of BioBrick™ vectors for metabolic pathway engineering. Appl Microbiol Biotechnol 92:1275–1286

    Article  CAS  PubMed  Google Scholar 

  • Wang KF, Dailey TA, Dailey HA (2001) Expression and characterization of the terminal heme synthetic enzymes from the hyperthermophile Aquifex aeolicus. FEMS Microbiol Lett 202:115–119

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Che FS, Terashima K, Takayama S, Yoshida S, Isogai A (2000) Purification and properties of protoporphyrinogen oxidase from spinach chloroplasts. Plant Cell Physiol 41:889–892

    Article  CAS  PubMed  Google Scholar 

  • Wilson RH, Martin-Avila E, Conlan C, Whitney SM (2018) An improved Escherichia coli screen for Rubisco identifies a protein-protein interface that can enhance CO2-fixation kinetics. J Biol Chem 293:18–27

    Article  CAS  PubMed  Google Scholar 

  • Zarzycki J, Axen SD, Kinney JN, Kerfeld CA (2013) Cyanobacterial-based approaches to improving photosynthesis in plants. J Exp Bot 64:787–798

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Garreton V, Chua NH (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19:1532–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Tang W, Hedtke B, Zhong L, Liu L, Peng L, Lu C, Grimm B, Lin R (2014) Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing. Proc Natl Acad Sci USA 111:2023–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Gyung-Hee Yu (Korean Agency for Technology and Standards) for expert comments and critical reading of this manuscript. We are also grateful to Dr. Ryouichi Tanaka of Hokkaido University for providing us with BT3 cells. This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry of the Ministry of Agriculture, Food, and Rural Affairs under Grant No. 814004-3 and by the BioGreen 21 Program of the Rural Development Administration under Grant Nos. PJ01121901 and PJ01186401.

Author information

Authors and Affiliations

Authors

Contributions

S-KS designed and supervised the work. JY designed, planned and performed the physiological and molecular characterization of PPOs. YH performed cyanobacteria culture and western blotting experiment. YOA performed the analysis of PPO enzyme kinetics and IC50 of PPO-inhibitors. M-KH performed the production of recombinant PPO proteins in E. coli and the analysis of monomeric form of PPOs.

Corresponding author

Correspondence to Soon-Kee Sung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Y., Y. H., S.-K. S. and FarmHannong Co., Ltd. have filed an international patent application (WO2016/099153A1) covering the genes reported in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Supplementary material 2 (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J., Han, Y., Ahn, Y.O. et al. Characterization of HemY-type protoporphyrinogen IX oxidase genes from cyanobacteria and their functioning in transgenic Arabidopsis. Plant Mol Biol 101, 561–574 (2019). https://doi.org/10.1007/s11103-019-00925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00925-8

Keywords

Navigation