Skip to main content
Log in

Merging of multiple signals regulating Δ9 fatty acid desaturase gene transcription in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Fatty acid desaturation, which requires molecular oxygen (O2) as an electron acceptor, is catalyzed by Δ9 fatty acid desaturase, which is encoded by OLE1 in Saccharomyces cerevisiae. Transcription of the OLE1 gene is repressed by unsaturated fatty acids (UFAs) and activated by hypoxia and low temperatures via the endoplasmic reticulum membrane protein Mga2p. We previously reported the isolation of the nfo3-1 (negative factor for O LE1) mutant, which exhibits enhanced expression of OLE1 in the presence of UFA and under aerobic conditions. In this work, we demonstrated that the NFO3 gene is identical to OLE1 and that the nfo3-1 mutation (renamed ole1-101) alters arginine-346, in the vicinity of the conserved histidine-rich motif essential for the catalytic function of the Ole1 protein, to lysine. The ratio of UFAs to total fatty acids in the ole1-101 mutant was 60%, compared to 75% in the wild type, suggesting that the reduction in relative levels of intracellular UFAs activates OLE1 transcription. However, in ole1-101 cells grown in the presence of oleic acid, the level of OLE1 expression remained high, although the relative amount of UFAs in the ole1-101 mutant cells was almost the same as that in wild-type cells growing under the same conditions. By contrast, when cells were grown with linoleic acid, which has a lower melting point than oleic acid, the elevation of the OLE1 expression level due to the ole1-101 mutation was almost completely suppressed. These observations suggest that the ole1-101 cells activate OLE1 transcription by sensing not only the intracellular UFA level, but also membrane fluidity or the nature of the UFA species itself. Furthermore, we found that not only the fatty acid-regulated (FAR) element but also the O 2 -regulated (O2R) element in the OLE1 promoter was involved in the activation of OLE1 transcription by the ole1-101 mutation, and that the effects of the low-oxygen signal and the ole1-101-generated signal on OLE1 expression were not additive. Taken together, these findings suggest that signals associated with hypoxia, low temperatures and intracellular UFA depletion activate OLE1 transcription by a common pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5A–D.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–1691

    Article  CAS  PubMed  Google Scholar 

  • Alexandre H, Rousseaux I, Charpentier C (1994) Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett 124:17–22

    CAS  PubMed  Google Scholar 

  • Anamnart S, Tomita T, Fukui F, Fujimori K, Harashima S, Yamada Y, Oshima Y (1997) The P-OLE1 gene of Pichia angusta encodes a Δ9-fatty acid desaturase and complements the ole1 mutation of Saccharomyces cerevisiae. Gene 184:299–306

    Article  CAS  PubMed  Google Scholar 

  • Anamnart S, Tolstorukov I, Kaneko Y, Harashima S (1998) Fatty acid desaturation in methylotrophic yeast Hansenula polymorpha strain CBS 1976 and unsaturated fatty acid auxotrophic mutants. J Ferment Bioeng 85:476–482

    Article  CAS  Google Scholar 

  • Berben G, Dumont J, Gilliquet V, Bolle PA, Hilger F (1991) The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7:475–477

    CAS  PubMed  Google Scholar 

  • Boonstra J, Nelemans SA, Feijen A, Bierman A, Van Zoelen EJ, Van der Saag PT, De Laat SW (1982) Effect of fatty acids on plasma membrane lipid dynamics and cation permeability in neuroblastoma cells. Biochim Biophys Acta 692:321–329

    Article  CAS  PubMed  Google Scholar 

  • Bossie MA, Martin CE (1989) Nutritional regulation of yeast Δ-9 fatty acid desaturase activity. J Bacteriol 171:6409–6413

    CAS  PubMed  Google Scholar 

  • Carratu L, Franceschelli S, Pardini CL, Kobayashi GS, Horvath I, Vigh L, Maresca B (1996) Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci USA 93:3870–3875

    CAS  PubMed  Google Scholar 

  • Chellappa R, Kandasamy P, Oh CS, Jiang Y, Vemula M, Martin CE (2001) The membrane proteins, Spt23p and Mga2p, play distinct roles in the activation of Saccharomyces cerevisiae OLE1 gene expression. J Biol Chem 276:43548–43556

    Article  CAS  PubMed  Google Scholar 

  • Choi JY, Stukey J, Hwang SY, Martin CE (1996) Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 271:3581–3589

    Article  CAS  PubMed  Google Scholar 

  • Fujimori K, Anamnart S, Nakagawa Y, Sugioka S, Ohta D, Oshima Y, Yamada Y, Harashima S (1997) Isolation and characterization of mutations affecting expression of the Δ9 fatty acid desaturase gene, OLE1, in Saccharomyces cerevisiae. FEBS Lett 413:226–230

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi-Mizutani M, Savin K, Cornish E, Tanaka Y, Ashikari T, Kusumi T, Murata N (1995) Senescence-induced expression of a homologue of Δ9 desaturase in rose petals. Plant Mol Biol 29:627–635

    CAS  PubMed  Google Scholar 

  • Gallwitz D, Sures I (1980) Structure of a split yeast gene: complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 77:2546–2550

    CAS  PubMed  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    CAS  PubMed  Google Scholar 

  • Gonzalez CI, Martin CE (1996) Fatty acid-responsive control of mRNA stability. J Biol Chem 271:25801–25809

    Article  CAS  PubMed  Google Scholar 

  • Harashima S, Mizuno T, Mabuchi H, Yoshimitsu S, Ramesh R, Hasebe M, Tanaka A, Oshima Y (1995) Mutations causing high basal level transcription that is independent of transcriptional activators but dependent on chromosomal position in Saccharomyces cerevisiae. Mol Gen Genet 247:716–725

    CAS  PubMed  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    CAS  PubMed  Google Scholar 

  • Hereford L, Fahrner K, Woolford J Jr, Rosbash M, Kaback DB (1979) Isolation of yeast histone genes H2A and H2B. Cell 18:1261–1271

    CAS  PubMed  Google Scholar 

  • Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102:577–586

    CAS  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  Google Scholar 

  • Jensen R, Sprague GF JR, Herskowitz I (1983) Regulation of yeast mating-type interconversion: feedback control of HO gene expression by the mating-type locus. Proc Natl Acad Sci USA 80:3035–3039

    CAS  PubMed  Google Scholar 

  • Jiang Y, Vasconcelles MJ, Wretzel S, Light A, Martin CE, Goldberg MA (2001) MGA2 is involved in the low-oxygen response element-dependent hypoxic induction of genes in Saccharomyces cerevisiae. Mol Cell Biol 21:6161–6169

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    CAS  PubMed  Google Scholar 

  • Krasowska A, Chmielewska L, Gapa D, Prescha A, Vachova L, Sigler K (2002) Viability and formation of conjugated dienes in plasma membrane lipids of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Rhodotorula glutinis and Candida albicans exposed to hydrophilic, amphiphilic and hydrophobic pro-oxidants. Folia Microbiol (Praha) 47:145–151

    Google Scholar 

  • Kwast KE, Burke PV, Staahl BT, Poyton RO (1999) Oxygen sensing in yeast: evidence for the involvement of the respiratory chain in regulating the transcription of a subset of hypoxic genes. Proc Natl Acad Sci USA 96:5446–5451

    Article  CAS  PubMed  Google Scholar 

  • Laoteng K, Anjard C, Rachadawong S, Tanticharoen M, Maresca B, Cheevadhanarak S (1999) Mucor rouxii Δ9-desaturase gene is transcriptionally regulated during cell growth and by low temperature. Mol Cell Biol Res Commun 1:36–43

    Article  CAS  PubMed  Google Scholar 

  • Love JA, Saum WR, McGee R Jr (1985) The effects of exposure to exogenous fatty acids and membrane fatty acid modification on the electrical properties of NG108-15 cells. Cell Mol Neurobiol 5:333–352

    CAS  PubMed  Google Scholar 

  • Lu SF, Tolstorukov II, Anamnart S, Kaneko Y, Harashima S (2000) Cloning, sequencing, and functional analysis of H-OLE1 gene encoding Δ9-fatty acid desaturase in Hansenula polymorpha. Appl Microbiol Biotechnol 54:499–509

    Article  CAS  PubMed  Google Scholar 

  • Luo C, McSwain JL, Tucker JS, Sauer JR, Essenberg RC (1997) Cloning and sequence of a gene for the homologue of the stearoyl CoA desaturase from salivary glands of the tick Amblyomma americanum. Insect Mol Biol 6:267–271

    CAS  PubMed  Google Scholar 

  • McDonough VM, Stukey JE, Martin CE (1992) Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 267:5931–5936

    CAS  PubMed  Google Scholar 

  • Mihara K (1990) Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. J Biochem (Tokyo) 108:1022–1029

    Google Scholar 

  • Mizuno T, Nakazawa N, Remgsamrarn P, Kunoh T, Oshima Y, Harashima S (1998) The Tup1-Ssn6 general repressor is involved in repression of IME1 encoding a transcriptional activator of meiosis in Saccharomyces cerevisiae. Curr Genet 33:239–247

    Article  CAS  PubMed  Google Scholar 

  • Mortimer RK, Johnston JR (1986) Genealogy of principal strains of the Yeast Genetic Stock Center. Genetics 113:35–43

    CAS  PubMed  Google Scholar 

  • Mortimer RK, Contopoulou CR, King JS (1992) Genetic and physical maps of Saccharomyces cerevisiae, edition 11. Yeast 8:817–902

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Sugioka S, Kaneko Y, Harashima S (2001) O2R, a novel regulatory element mediating Rox1p-independent O2 and unsaturated fatty acid repression of OLE1 in Saccharomyces cerevisiae. J Bacteriol 183:745–751

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Sakumoto N, Kaneko Y, Harashima S (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun 291:707–713

    Article  CAS  PubMed  Google Scholar 

  • Nakashima S, Zhao Y, Nozawa Y (1996) Molecular cloning of Δ9 fatty acid desaturase from the protozoan Tetrahymena thermophila and its mRNA expression during thermal membrane adaptation. Biochem J 317:29–34

    CAS  PubMed  Google Scholar 

  • Ntambi JM (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40:1549–1558

    CAS  PubMed  Google Scholar 

  • Parent SA, Fenimore CM, Bostian KA (1985) Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1:83–138

    Google Scholar 

  • Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, Jentsch S (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48 UFD1/NPL4, a ubiquitin-selective chaperone. Cell 107:667–677

    CAS  PubMed  Google Scholar 

  • Rose MD, Novick P, Thomas JH, Botstein D, Fink GR (1987) A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243

    PubMed  Google Scholar 

  • Rose M, Winston F, Hieter P (eds) (1990) Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.

    Google Scholar 

  • Sakumoto N, et al (1999) A series of protein phosphatase gene disruptants in Saccharomyces cerevisiae. Yeast 15:1669–1679

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Stewart LC, Yaffe MP (1991) A role for unsaturated fatty acids in mitochondrial movement and inheritance. J Cell Biol 115:1249–1257

    CAS  PubMed  Google Scholar 

  • Stukey JE, McDonough VM, Martin CE (1990) The OLE1 gene of Saccharomyces cerevisiae encodes the Δ9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265:20144–20149

    CAS  PubMed  Google Scholar 

  • Suzuki I, Los DA, Kanesaki Y, Mikami K, Murata N (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334

    Article  CAS  PubMed  Google Scholar 

  • Toh-e A, Ueda Y, Kakimoto SI, Oshima Y (1973) Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae. J Bacteriol 113:727–738

    CAS  PubMed  Google Scholar 

  • Vasconcelles MJ, Jiang Y, McDaid K, Gilooly L, Wretzel S, Porter DL, Martin CE, Goldberg MA (2001) Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. J Biol Chem 276:14374–14384

    CAS  PubMed  Google Scholar 

  • Vossen RC, van Dam-Mieras MC, Hornstra G, Zwaal RF (1995) Differential effects of endothelial cell fatty acid modification on the sensitivity of their membrane phospholipids to peroxidation. Prostaglandins Leukot Essent Fatty Acids 52:341–347

    CAS  PubMed  Google Scholar 

  • Yoshida K, Kuromitsu Z, Ogawa N, Oshima Y (1989) Mode of expression of the positive regulatory genes PHO2 and PHO4 of the phosphatase regulon in Saccharomyces cerevisiae. Mol Gen Genet 217:31–39

    CAS  PubMed  Google Scholar 

  • Zhang L, Ge L, Parimoo S, Stenn K, Prouty SM (1999) Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem J 340:255–264

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Skalsky Y, Garfinkel DJ (1999) MGA2 or SPT23 is required for transcription of the Δ9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151:473–483

    CAS  PubMed  Google Scholar 

  • Zitomer RS, Lowry CV (1992) Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev 56:1–11

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Yoshida and M. Nakajima (International Center for Biotechnology, Osaka University) for GC analysis of fatty acids. This work was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas (No. 12024213) to S. H. from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Harashima.

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, Y., Ueda, A., Kaneko, Y. et al. Merging of multiple signals regulating Δ9 fatty acid desaturase gene transcription in Saccharomyces cerevisiae . Mol Gen Genomics 269, 370–380 (2003). https://doi.org/10.1007/s00438-003-0845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0845-z

Keywords

Navigation