Skip to main content
Log in

Characterization of the ugpG gene encoding a UDP-glucose pyrophosphorylase from the gellan gum producer Sphingomonas paucimobilis ATCC 31461

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The ugpG gene, which codes for a UDP-glucose pyrophosphorylase (UGP) (or glucose-1-phosphate uridylyltransferase; EC 2.7.7.9) in Sphingomonas paucimobilis ATCC 31461, was cloned and sequenced. This industrial strain produces the exopolysaccharide gellan, a new commercial gelling agent, and the ugpG gene may convert glucose-1-phosphate into UDP-glucose in the gellan biosynthetic pathway. The ugpG gene is capable of restoring the capacity of an Escherichia coli galU mutant to grow on galactose by functional complementation of its deficiency for UDP-glucose pyrophosphorylase activity. As expected, the predicted gene product shows strong homology to UDP-glucose pyrophosphorylases from several bacterial species. The N-terminal region of UgpG exhibits the motif GXGTRXLPXTK, which is highly conserved among bacterial XDP-sugar pyrophosphorylases, and a lysine residue (K192) is located within a VEKP motif predicted to be essential for substrate binding or catalysis. UgpG was purified to homogeneity as a heterologous fusion protein from crude cell extracts prepared from IPTG-induced cells of E. coli, using affinity chromatography. Under denaturing conditions, the fusion protein S-UgpG-His6 migrated with an estimated molecular mass of 36 kDa [corresponding to the predicted molecular mass of native UgpG (31.2 kDa) plus 5 kDa for the S and histidine tags). Kinetic analysis of UgpG in the reverse reaction (pyrophosphorolysis) showed a typical Michaelis-Menten substrate saturation pattern. The apparent K m and V max values estimated for UDP-glucose were 7.5 μM and 1275 μmol/min/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Arrecubieta C, García E, López R (1995) Sequence and transcriptional analysis of a DNA region involved in the production of capsular polysaccharide in Streptococcus pneumoniae type 3. Gene 167:1–7

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Schmidt M, Jäger W, Pühler A (1995) New gentamicin resistance and lacZ promoter probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions. Gene 162:37–39

    CAS  PubMed  Google Scholar 

  • Becker A, Katzen F, Pühler A, Ielpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50:145–152

    Article  CAS  PubMed  Google Scholar 

  • Bernstein RL, Robbins WP (1965) Control aspects of uridine 5′-diphosphate glucose and thymidine 5′-diphosphate glucose synthesis by microbial enzymes. J Biol Chem 240:391–397

    CAS  Google Scholar 

  • Boels IC, Ramos A, Kleerebezem M, De Vos WM (2001) Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl Environ Microbiol 67:3033–3040

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brede G, Fjaervik E, Valla S (1991) Nucleotide sequence and expression analysis of the Acetobacter xylinum uridine diphosphoglucose pyrophosphorylase gene. J Bacteriol 173:7042–7045

    CAS  PubMed  Google Scholar 

  • Brown K, Pompeo F, Dixon D, Mengin-Lecreulx D, Cambillau C, Bourne Y (1999) Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J 18:4096–4107

    Article  CAS  PubMed  Google Scholar 

  • Capela D, et al (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98:9877–9882

    CAS  PubMed  Google Scholar 

  • Crater DL, Dougherty BA, van de Rijn I (1995) Molecular characterization of hasC from an operon required for hyaluronic acid synthesis in group A Streptococci. J Biol Chem 270:28676–28680

    Article  CAS  PubMed  Google Scholar 

  • Daran JM, Dallies N, Thines-Sempoux D, Paquet V, François J (1995) Genetic and biochemical characterization of the UGP1gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. Eur J Biochem 233:520–530

    CAS  PubMed  Google Scholar 

  • Degeest B, De Vuyst L (1999) Indication that the nitrogen source influences both amounts and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Appl Environ Microbiol 65:2863–2870

    CAS  PubMed  Google Scholar 

  • DelVecchio VG, et al (2002) The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA 99:443–448

    Article  CAS  PubMed  Google Scholar 

  • Dutta TK, Selifonov SA, Gunsalus IC (1998) Oxidation of methyl substituted naphthalenes: pathways in a versatile Sphingomonas paucimobilis strain. Appl Environ Microbiol 64:1884–1889

    CAS  PubMed  Google Scholar 

  • Eimert K, Villand P, Kilian A, Kleczkowski LA (1996) Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley ( Hordeum vulgare) tissues. Gene 170:227–232

    Article  CAS  PubMed  Google Scholar 

  • Fialho AM, Martins LO, Donval ML, Leitao JH, Ridout MJ, Jay AJ, Morris VJ, Sá-Correia I (1999) Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl Environ Microbiol 65:2485–2491

    CAS  PubMed  Google Scholar 

  • Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61:1917–1922

    CAS  PubMed  Google Scholar 

  • Frey PA (1996) The Leloir pathway: a mechanism imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 10:461–470

    CAS  PubMed  Google Scholar 

  • Fürste JP, Pansegrau W, Frank R, Blöcker H, Sholz P, Bagdasarian M, Lanka E (1986) Molecular cloning of the plasmid RP4 primase region in multi-host-range tacP expression vector. Gene 48:119–131

    PubMed  Google Scholar 

  • Giaever HM, Styrvold OB, Kaasen I, Strøm AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849

    CAS  PubMed  Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    CAS  PubMed  Google Scholar 

  • Jay AJ, Colquhoun IJ, Ridout MJ, Brownsey GJ, Morris VJ, Fialho AM, Leitão JH, Sá-Correia I (1998) Analysis of structure and function of gellans with different substitution patterns. Carbohydr Polym 35:179–188

    Article  CAS  Google Scholar 

  • Kaneko T, et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    CAS  PubMed  Google Scholar 

  • Koo HM, Yim SW, Lee CS, Pyun YR, Kim YS (2000) Cloning, sequencing, and expression of UDP-glucose pyrophosphorylase gene from Acetobacter xylinum BRC5. Biosci Biotechnol Biochem 64:523–529

    CAS  PubMed  Google Scholar 

  • Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K (2000) Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 44:563–575

    CAS  PubMed  Google Scholar 

  • Kuo MS, Mort AJ, Dell A (1986) Identification and location of L-glycerate, an unusual substituent in gellan gum. Carbohydr Res 56:173–187

    Article  Google Scholar 

  • Macpherson DF, Manning PA, Morona R (1994) Characterization of the dTDP-rhamnose biosynthetic genes encoded in the rfb locus of Shigella flexneri. Mol Microbiol 11:281–292

    CAS  PubMed  Google Scholar 

  • Marolda CL, Valvano MA (1995) Genetic analysis of the dTDP-rhamnose biosynthesis region of the E. coli VW187 (O7:K1) rfb gene cluster: identification of functional homologs of rfbB and rfbA in the rff cluster and correct location of the rffE gene. J Bacteriol 177:5539–5546

    CAS  PubMed  Google Scholar 

  • Marolda CL, Valvano MA (1996) The GalF protein of Escherichia coli is not a UDP-glucose pyrophosphorylase but interacts with GalU protein possibly to regulate cellular levels of UDP-glucose. Mol Microbiol 22:827–840

    CAS  PubMed  Google Scholar 

  • Martins LO, Sá-Correia I (1991) Gellan gum biosynthetic enzymes in producing and nonproducing variants of Pseudomonas elodea. Biotechnol Appl Biochem 14:357–364

    CAS  PubMed  Google Scholar 

  • Nakae T, Nikaido H (1971) Multiple molecular forms of uridine diphosphate glucose pyrophosphorylase from Salmonella typhimurium. J Biol Chem 246:4386–4396

    CAS  PubMed  Google Scholar 

  • Nierman WC, (2001) Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 98:4136–4141

    CAS  PubMed  Google Scholar 

  • Nishikawa S, Sonoki T, Kasahara T, Obi T, Kubota S, Kawai S, Morohoshi N, Katayama Y (1998) Cloning and sequencing of the Sphingomonas ( Pseudomonas) paucimobilis gene essential for the O demethylation of vanillate and syringate. Appl Environ Microbiol 64:836–842

    CAS  PubMed  Google Scholar 

  • Sá-Correia I, Fialho AM, Videira P, Moreira LM, Marques AR, Albano H (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol 29:170–176

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893

    CAS  PubMed  Google Scholar 

  • Stover CK, et al (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    PubMed  Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    CAS  PubMed  Google Scholar 

  • Thorson JS, Kelly TM, Liu H (1994) Cloning, sequencing and overexpression in Escherichia coli of the D-glucose-1-phosphate cytidyltransferase gene isolated from Yersinia pseudotuberculosis. J Bacteriol 176:1840–1849

    CAS  PubMed  Google Scholar 

  • Van Kranenburg R, Marugg JD, Van Swam II, Willem J, De Vos WM (1997) Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol 24:387–397

    PubMed  Google Scholar 

  • Videira PA, Cortes LL, Fialho AM, Sá-Correia I (2000) Identification of pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in gellan gum producing strain Sphingomonas paucimobilis ATCC 31461. Appl Environ Microbiol 66:2252–2258

    Article  CAS  PubMed  Google Scholar 

  • Videira PA, Fialho AM, Geremia RA, Breton C, Sá-Correia I (2001) Biochemical characterization of the β-1,4-glucuronosyltransferase GelK in gellan gum producing strain Sphingomonas paucimobilis ATCC 31461. Biochem J 358:457–464

    Article  CAS  PubMed  Google Scholar 

  • Wei CL, Lin NT, Weng SF, Tseng YH (1996) The gene encoding UDP-glucose pyrophosphorylase is required for the synthesis of xanthan gum in Xanthomonas campestris. Biochem Biophys Res Commun 226:607–612

    Article  CAS  PubMed  Google Scholar 

  • Weissborn AC, Liu Q, Rumley MK, Kennedy EP (1994) UTP: alpha-D-glucose-1-phosphate uridylyltransferase of Escherichia coli: isolation and DNA sequence of the galU gene and purification of the enzyme. J Bacteriol 176:2611–2618

    CAS  PubMed  Google Scholar 

  • Yamashita Y, Tsukioka Y, Nakano Y, Tomihisa K, Oho T, Koga T (1998) Biological functions of UDP-glucose synthesis in Streptococcus mutants. Microbiology 144:1235–1245

    CAS  PubMed  Google Scholar 

  • Yamazaki M, Thorne L, Mikolajczak MJ, Armentrout RW, Pollock TJ (1996) Linkage of genes essential for the synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol 178:2676–2687

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal (grants: PRAXIS/P/BIO/12020/1998 and POCTI/35733/1999 and PhD and M Sc scholarships to A.R.Marques and P.B. Ferreira, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fialho.

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, A.R., Ferreira, P.B., Sá-Correia, I. et al. Characterization of the ugpG gene encoding a UDP-glucose pyrophosphorylase from the gellan gum producer Sphingomonas paucimobilis ATCC 31461. Mol Gen Genomics 268, 816–824 (2003). https://doi.org/10.1007/s00438-003-0805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0805-7

Keywords

Navigation