Skip to main content
Log in

Importance of transmembrane segments in Escherichia coli SecY

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To assess the functional importance of the transmembrane regions of SecY, we constructed a series of SecY variants, in which the six central residues of each transmembrane segment were replaced by amino acid residues from either transmembrane segment 3 or 4 of LacY. The SecY function, as assessed by the ability to complement cold-sensitive secY mutants with respect to their growth and translocase defects, was eliminated by the alterations in transmembrane segments 2, 3, 4, 7, 9 and 10. Among them, those in segments 3 and 4 had especially severe effects. In contrast, transmembrane segments 1, 5, 6, and 8 were more tolerant to the sequence alterations. The purified protein with an altered transmembrane segment 6 retained, in large measure, the ability to support SecA-dependent preprotein translocation in vitro. These results will help us to further understand how the SecYEG protein translocation channel functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3A, B.
Fig. 4A, B.

Similar content being viewed by others

References

  • Akiyama Y, Ito K (1987) Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coli. EMBO J 6:3465–3470

    CAS  PubMed  Google Scholar 

  • Akiyama Y, Ito K (1990) SecY protein, a membrane embedded secretion factor of E. coli is cleaved by the OmpT protease in vitro. Biochem Biophys Res Commun 167:711–715

    Google Scholar 

  • Baba T, Jacq A, Brickman E, Beckwith J, Taura T, Ueguchi C, Akiyama Y, Ito K (1990) Characterization of cold-sensitive SecY mutants of Escherichia coli. J Bacteriol 172:7005–7010

    CAS  PubMed  Google Scholar 

  • Baba T, Taura T, Shimoike T, Akiyama Y, Yoshihisa T, Ito K (1994) A cytoplasmic domain is important for the formation of a SecY-SecE translocator complex. Proc Natl Acad Sci USA 91:4539–4543

    CAS  PubMed  Google Scholar 

  • Bessonneau P, Besson V, Collinson I, Duong F (2002) The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J 21:995–1003

    CAS  PubMed  Google Scholar 

  • Breyton C, Haase W, Rapoport TA, Kühlbrandt W, Collinson I (2002) Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418:662–665

    Article  CAS  PubMed  Google Scholar 

  • Chiba K, Mori H, Ito K (2002) Roles of the C-terminal end of SecY in protein translocation and viability of Escherichia coli. J Bacteriol 184:2243–50

    Article  CAS  PubMed  Google Scholar 

  • Collinson I, Breyton C, Duong F, Tziatzios C, Schubert D, Or E, Rapoport T, Kuhlbrandt W (2001) Projection structure and oligomeric properties of a bacterial core protein translocase. EMBO J 20:2462–2471

    CAS  PubMed  Google Scholar 

  • Economou A, Wickner W (1994) SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78:835–843

    CAS  PubMed  Google Scholar 

  • Eichler J, Brunner J, Wickner W (1997) The protease-protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase. EMBO J 16:2188–2196

    Article  CAS  PubMed  Google Scholar 

  • Emr SD, Hanley-Way S, Silhavy TJ (1981) Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23:79–88

    CAS  PubMed  Google Scholar 

  • Flower AM, Osborne RS, Silhavy TJ (1995) The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE. EMBO J 14:884–893

    CAS  PubMed  Google Scholar 

  • Ito K, Akiyama Y (1991) In vivo analysis of integration of membrane proteins in Escherichia coli. Mol Microbiol 5:2243–2253

    CAS  PubMed  Google Scholar 

  • Joly JC, Wickner W (1993) The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids. EMBO J 12:255–263

    CAS  PubMed  Google Scholar 

  • Kaufmann A, Manting EH, Veenendaal AK, Driessen AJ, van der Does C (1999) Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry 38:9115–9125

    Article  CAS  PubMed  Google Scholar 

  • Kihara A, Akiyama Y, Ito K (1995) FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc Natl Acad Sci USA 92:4532–4536

    CAS  PubMed  Google Scholar 

  • Manting EH, Driessen AJ (2000) Escherichia coli translocase: the unraveling of a molecular machine. Mol Microbiol 37:226–238

    CAS  PubMed  Google Scholar 

  • Manting EH, van der Does C, Remigy H, Engel A, Driessen AJ (2000) SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J 19:852–861

    CAS  PubMed  Google Scholar 

  • Matsumoto G, Yoshihisa T, Ito K (1997) SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane. EMBO J 16:6384–6393

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto G, Nakatogawa H, Mori H, Ito K (2000) Genetic dissection of SecA: suppressor mutations against the secY205translocase defect. Genes Cells 5:991–999

    Article  CAS  PubMed  Google Scholar 

  • Matsuo E, Mori H, Shimoike T, Ito K (1998) Syd, a SecY-interacting protein, excludes SecA from the SecYE complex with an altered SecY24 subunit. J Biol Chem 273:18835–18840

    Article  CAS  PubMed  Google Scholar 

  • Meyer TH, Menetret JF, Breitling R, Miller KR, Akey CW, Rapoport TA (1999) The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex. J Mol Biol 285:1789–1800

    CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Mori H, Ito K (2001a) The Sec protein-translocation pathway. Trends Microbiol 9:494–500

    CAS  PubMed  Google Scholar 

  • Mori H, Ito K (2001b) An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY. Proc Natl Acad Sci USA 98:5128–5133

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Ito K (2002) Biochemical characterization of a mutationally altered protein translocase: proton-motive force stimulation of the initiation phase of translocation. J. Bacteriol, in press

    Google Scholar 

  • Nishiyama K, Mizushima S, Tokuda H (1993) A novel membrane protein involved in protein translocation across the cytoplasmic membrane of Escherichia coli. EMBO J 12:3409–3415

    CAS  PubMed  Google Scholar 

  • Nishiyama K, Suzuki T, Tokuda H (1996) Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85:71–81

    CAS  PubMed  Google Scholar 

  • Osborne RS, Silhavy TJ (1993) PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J 12:3391–3398

    CAS  PubMed  Google Scholar 

  • Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA (1998) Signal sequence recognition in posttranslational protein transport across the yeast ER membrane Cell 94 :795–807

    Google Scholar 

  • Pogliano KJ, Beckwith J (1993) The Cs sec mutants of Escherichia coli reflect the cold sensitivity of protein export itself. Genetics 133:763–773

    CAS  PubMed  Google Scholar 

  • Sako T (1991) Novel prlA alleles defective in supporting staphylokinase processing in Escherichia coli. J Bacteriol 73:2289–2296

    Google Scholar 

  • Schäfer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    PubMed  Google Scholar 

  • Shimoike T, Akiyama Y, Baba T, Taura T, Ito K (1992) SecY variants that interfere with Escherichia coli protein export in the presence of normal SecY. Mol Microbiol 6:1205–1210

    CAS  PubMed  Google Scholar 

  • Shimoike T, Taura T, Kihara A, Yoshihisa T, Akiyama Y, Cannon K, Ito K (1995) Product of a new gene, syd, functionally interacts with SecY when overproduced in Escherichia coli. J Biol Chem 270:5519–5526

    Article  PubMed  Google Scholar 

  • Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Taura T, Baba T, Akiyama Y, Ito K (1993) Determinants of the quantity of the stable SecY complex in the Escherichia coli cell. J Bacteriol 175:7771–7775

    CAS  PubMed  Google Scholar 

  • Taura T, Akiyama Y, Ito K (1994) Genetic analysis of SecY: additional export-defective mutations and factors affecting their phenotypes. Mol Gen Genet 243:261–269

    CAS  PubMed  Google Scholar 

  • Taura T, Yoshihisa T, Ito K (1997) Protein translocation functions of Escherichia coli SecY: in vitro characterization of cold-sensitive secY mutants. Biochimie 79:517–521

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi C, Wittekind M, Nomura M, Akiyama Y, Ito K (1989) The secY-rpmJ region of the Spc ribosomal protein operon in Escherichia coli: structural alterations affecting secY expression. Mol Gen Genet 217:1–5

    CAS  PubMed  Google Scholar 

  • Veenendaal AK, van der Does C, Driessen AJ (2001) Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis. J Biol Chem 276:2559–32566

    Article  Google Scholar 

  • Veenendaal AK, Van Der Does C, Driessen AJ (2002) The core of the bacterial translocase harbors a tilted transmembrane segment 3 of SecE. J Biol Chem 277:36697–36705

    Article  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yoshinori Akiyama for discussion, and Kiyoko Mochizuki, Mikihiro Yamada, and Yasuhide Yoshioka and Michiyo Sano for technical assistance. This work was supported by grants from CREST, JST (Japan Science and Technology Corporation), and the Ministry of Education, Culture, Sports, Science and Technology, Japan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ito.

Additional information

Communicated by W. Goebel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimokawa, N., Mori, H. & Ito, K. Importance of transmembrane segments in Escherichia coli SecY. Mol Gen Genomics 269, 180–187 (2003). https://doi.org/10.1007/s00438-003-0804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0804-8

Keywords

Navigation