Skip to main content
Log in

Ecological factors shaping ectoparasite communities on heteromyid rodents at Médanos de Samalayuca

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Rodent ectoparasites are vectors for important pathogens of wildlife, domestic animals, and even zoonosis. Nevertheless, distribution patterns of ectoparasites are not fully understood; habitat, season, and host species are important predictors of distribution and prevalence. Heteromyid rodents are considered important reservoirs of diseases, given the presence of different ectoparasites and pathogens in them, and they offer the opportunity to learn about the ecology of parasites. The aim of the present work was to survey ectoparasites associated with heteromyid rodents near a National Protected Area in Chihuahua Mexico, south of the USA-Mexico border, and asses the effects of ecological factors (season, vegetation type, host species, and host body condition) on parasite infestation. We sampled five different locations from January 2018 to July 2022; 845 heteromyid rodents were examined and 49 fleas and 33 ticks were collected. Ectoparasites belonged to the Siphonaptera and Ixodida orders, including three families Ixodidae (Riphicephalus sanguineus), Pulicidae (Pulex irritans), and Ctenophthalmidae (Meringins altipecten, M. dipodomys). Five species of host rodents were captured, Dipodomys merriami, D. ordii, Chaetodipus eremicus, C. hispidus, and C. intermedius, but the last two species did not present any ectoparasites. Dipodomys merriami presented the highest flea and tick prevalence followed by D. ordii. We found parasitic partnerships between heteromyids according to ecological factors. The infestation in C. eremicus was related to body condition, vegetation type, and sex; in D. merriami, it was related to vegetation type and season, while D. ordii did not present a clear pattern of infestation. Our results suggest that the infestation patterns of heteromyid rodents in desert habitats are species dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data are available from the authors upon reasonable request.

References

  • Acosta R, Morrone JJ (2003) Clave ilustrada para la identificación de los taxones supraespecíficos de Shiponaptera en México. A Zool Mex 89:39–53

    Google Scholar 

  • Acosta R, Fernández JA (2015) Flea diversity and prevalence on arid-adapted rodents in the Oriental Basin, Mexico. Rev Mex Biodivers 86:981–988. https://doi.org/10.1016/j.rmb.2015.09.014

    Article  Google Scholar 

  • Aleuy OA, Kutz S (2020) Adaptations, life-history traits and ecological mechanisms of parasites to survive extremes and environmental unpredictability in the face of climate change. Int J Parasitol Parasites Wildl 12:308–317. https://doi.org/10.1016/j.ijppaw.2020.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Álvarez Castañeda ST, Álvarez T, González-Ruiz N (2015) Guía para identificar los mamíferos de México en campo y laboratorio. Catálogo de la Biblioteca del Congreso de EE.UU, Pandora Impresores

    Google Scholar 

  • Anderson RP (2015) Family Heteromyidae Gray, 1868. Mammals S Amer 2:51–58

    Google Scholar 

  • Baird SF (1858) Mammalia in Repts. US Expl Surv 8:421

    Google Scholar 

  • Balashov IS, Bochkov AV, Vashchenok VS, Grigor’eva LA, Staniukovich MK, Tret’iakov KA (2007) Structure of populations and ecological nishes of ectoparasites in the parasite communities of small forest mammals. Parazitologija 41:329–347

    Google Scholar 

  • Beristain-Ruiz DM, Vital-García C, Figueroa-Millán JV, Lira-Amaya JJ, Garza-Hernández JA, Sánchez-Ayala JR, Flores-Ceballos S, Rodríguez-Alarcon CA, Olivas-Sanchez MP, Pons-Monarrez G (2021) Molecular detection of tick-borne pathogens in American Bison (Bison bison) at El Uno Ecological Reserve, Janos, Chihuahua Mexico. Pathog 10:1428. https://doi.org/10.3390/pathogens10111428

    Article  CAS  Google Scholar 

  • Beristain-Ruiz DM et al (2022) Possible association between selected tick-borne pathogen prevalence and Rhipicephalus sanguineus sensu lato infestation in dogs from Juarez City (Chihuahua), Northwest Mexico–US Border. Pathog 11:552. https://doi.org/10.3390/pathogens11050552

    Article  CAS  Google Scholar 

  • Boyard C, Vourc’h G, Barnouin J (2008) The relationship between Ixodes ricinus and small mammal species at the woodland–pasture interface. Exp Appl Acarol 44:61–76

    Article  PubMed  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolist et al. revisted. J. Parasitol 83:575–583

    Article  CAS  PubMed  Google Scholar 

  • Butler RA, Fryxell RT, Houston AE, Bowers EK, Paulsen D, Coons LB, Kennedy ML (2020) Small-mammal characteristics affect tick communities in southwestern Tennessee (USA). Int J Parasitol Parasites Wildl 12:150–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canestrini (1888) In Catalogue of life

  • Cayuela L, de la Cruz M (2022) Análisis de datos ecológicos en R. Mundiprensa, España

    Google Scholar 

  • Córdoba Fierro TA (2018) Diversidad de roedores y sus parásitos en zonas áridas de México. Doctoral dissertation. Universidad Autónoma de Chihuahua

    Google Scholar 

  • Colombo VC, Lareschi M, Monje LD, Antoniazzi LR, Morand S, Beldomenico PM (2023) Ecological factors shaping the ectoparasite community assembly of the Azara’s Grass Mouse, Akodon azarae (Rodentia: Cricetidae). Parasitol Res 1–11. https://doi.org/10.1007/s00436-023-07901-8

  • Comisión Nacional de Áreas Naturales Protegidas (2013) Programa de Manejo Área de Protección de Flora y Fauna Médanos de Samalayuca. Secretaría de Medio Ambiente y Recursos Naturales México.

  • Coult (1893) US Nat Herb 4:75

  • Coville (1893) Published in Contr US. Natl Herb 4:75

    Google Scholar 

  • Daniel M, Malý M, Danielová V, Kříž B, Nuttall P (2015) Abiotic predictors and annual seasonal dynamics of Ixodes ricinus, the major disease vector of Central Europe. Par Vect 8:1–12

    Google Scholar 

  • Decker KH, Duszynski DW, Patrick MJ (2001) Biotic and abiotic effects on endoparasites infecting Dipodomys and Perognathus species. J. Parasitol. 87:300–307. https://doi.org/10.1645/0022-3395(2001)087[0300:BAAEOE]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Eads DA, Hoogland JL (2017) Precipitation, climate change, and parasitism of prairie dogs by fleas that transmit plague. J Parasit 103:309–319

    Article  PubMed  Google Scholar 

  • Esson C, Samelius G et al (2023) The prevalence of rodent-borne zoonotic pathogens in the South Gobi desert region of Mongolia. Infect Ecol Epidemiol 13:2270258

    PubMed  PubMed Central  Google Scholar 

  • Falcón-Ordaz J, Acosta R, Fernández JA, Lira-Guerrero G (2012) Helmintos y sifonápteros parásitos de cinco especies de roedores en localidades de la Cuenca Oriental, en el centro de México. A Zool Mex 28:287–304

    Google Scholar 

  • Fernández-González AM, Kosoy MY, Rubio AV, Graham CB, Montenieri JA, Osikowicz LM, Bai Y, Acosta-Gutiérrez R, Avila-Flores KL, Gage KL, Suzán G (2016) Molecular survey of Bartonella species and Yersinia pestis in rodent fleas (Siphonaptera) from Chihuahua, Mexico. J Med Entomol 53:199–205. https://doi.org/10.1093/jme/tjv181

    Article  CAS  PubMed  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fischer (1829) Synopsis Mamm:325

  • Gage KL, Burkot TR, Eisen RJ, Hayes EB (2008) Climate and vectorborne diseases. Am J Prev Med 35:436–450. https://doi.org/10.1016/j.amepre.2008.08.030

    Article  PubMed  Google Scholar 

  • Galán AP, Hamer SA, Folmar HA, Campbell TA, Light JE (2022) Baseline biodiversity assessment of South Texas small mammals and host-associated hard ticks with no detection of selected tick-borne pathogens. W N Am Nat 82:254–270. https://doi.org/10.3398/064.082.0204

    Article  Google Scholar 

  • Giles B (2021) Small mammal community ecology and ectoparasite dynamics in a Tamaulipan Thornscrub Habitat.Dissertation. University of Utah

    Google Scholar 

  • Granados-Sánchez D, Sánchez-González A, Granados Victorino RL, Borja de la Rosa A (2011) Vegetation ecology of the chihuahuan desert. Rev Chapingo ser c forestales ambiente 17:111–130. https://doi.org/10.5154/r.rchscfa.2010.10.102

    Article  Google Scholar 

  • Gray (1841) Ann Mag Nat Hist 7:521

    Article  Google Scholar 

  • Gray (1868) Proc Zool Soc Lond 1868:204

  • Guerra-Murcia N, Acosta R, Gatica-Colima A, Vital-García C, Rueda-Torres R (2021) New species of flea of the genus Dactylopsylla Jordan (Insecta: Siphonaptera) from the Flora and Fauna Protection Area Médanos de Samalayuca, Chihuahua, Mexico. Zootaxa 5032:113–120. https://doi.org/10.11646/zootaxa.5032.1.6

    Article  PubMed  Google Scholar 

  • Han BA, Schmidt JP, Bowden SE, Drake JM (2015) Rodent reservoirs of future zoonotic diseases. PNAS 112:7039–7044. https://doi.org/10.1073/pnas.15015981

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Harrell F Jr (2023) Hmisc: Harrell Miscellaneous. R package version 5:1–0. https://CRAN.R-project.org/package=Hmisc

    Google Scholar 

  • Harrison A, Scantlebury M, Montgomery WI (2010) Body mass and sex biased parasitism in wood mice Apodemus sylvaticus. Oikos 119:1099–1104. https://doi.org/10.1111/j.1600-0706.2009.18072.x

    Article  ADS  Google Scholar 

  • Hernández-Urbina CF, Vital-García C, Ávila AME, Gatica-Colima AG, Sánchez-Olivas MP, Clemente-Sánchez F (2020) First report of Siphonaptera parasites in Canis latrans in the Flora and Fauna Protection Area, Médanos de Samalayuca Chihuahua, Mexico. Vet Parasitol Reg Stud 20:100379. https://doi.org/10.1016/j.vprsr.2020.100379

    Article  Google Scholar 

  • Hoberg EP, Brooks DR (2015) Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos Trans R Soc B, Biol Sci 370:20130553. https://doi.org/10.1098/rstb.2013.0553

    Article  Google Scholar 

  • Hopkins GH, Rothschild M (1962). An illustrated catalogue of the Rothschild collection of fleas (Siphonaptera) in the British Museum (Natural History) III. Hystrichopsyllidae (Acedestiinae, Anomiopsyllinae, Hystrichopsyllinae, Neopseyllinae, Rhadinopsyllinae and Stenoponiinae). British Museum (N.H.) UK.

  • Hurtado G, Mayer G, Mabry KE (2021) Does urbanization ameliorate the effect of endoparasite infection in kangaroo rats? Ecol Evol 11:13390–13400. https://doi.org/10.1002/ece3.8062

    Article  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Valverde A, Acevedo P, Barbosa AM, Lobo JM, Real R (2013) Discrimination capacity in species distribution models depends on the representativeness of the environmental domain. GEB 22:508–516. https://doi.org/10.1111/geb.12007

    Article  Google Scholar 

  • Jones CR, Brunner JL, Scoles GA, Owen JP (2015) Factors affecting larval tick feeding success: host, density and time. Parasit vectors 8:1–10

    Article  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993. https://doi.org/10.1038/nature06536

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kaufman DW, Kaufman GA (2015) Ord's kangaroo rats in north-central Kansas: patterns of body size and reproduction. Trans Kans Acad 118:251–263. https://doi.org/10.1660/062.118.0315

    Article  Google Scholar 

  • Kiffner C, Stanko M et al (2014) Variable effects of host characteristics on species richness of flea infracommunities in rodents from three continents. Parasitol res 113:2777–2788

    Article  PubMed  Google Scholar 

  • Koch (1837) Published in Systematische übersicht über die Ordnung der Zecken. Archiv für Naturgeschichte 10:217–239

    Article  Google Scholar 

  • Koch (1844) in Döring M (2022)

  • Kohls (1938) Published by Robert E. Lewis world species flea (Siphonaptera) list

    Google Scholar 

  • Kosoy M, Reynolds P, Bai Y, Sheff K, Enscore RE, Montenieri J, Ettestad P, Gage K (2017) Small-scale die-offs in woodrats support long-term maintenance of plague in the US southwest. Vector-Borne Zoonotic Dis 17:635–644. https://doi.org/10.1089/vbz.2017.2142

    Article  PubMed  PubMed Central  Google Scholar 

  • Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV (2001) Effect of air temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). J Med Entomol 38:629–637

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk AI, van Duijvendijk GLA, Swart A et al (2020) Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk. Parasit Vectors 13:1–17. https://doi.org/10.1186/s13071-020-3902-0

    Article  Google Scholar 

  • Kreppel KS, Telfer S, Rajerison M, Morse A, Baylis M (2016) Effect of temperature and relative humidity on the development times and survival of Synopsyllus fonquerniei and Xenopsylla cheopis, the flea vectors of plague in Madagascar. Parasit Vectors 9:1–10

    Article  Google Scholar 

  • Latreille (1806) The distribution and host relations of Norwegian ticks (Acari, Ixododes). Fauna norv Ser B 30:46–51

    Google Scholar 

  • Lehmann Neumann (1896) Int J Syst. Bacteriol 30:419

  • Light JE, Durden LA, Oconnor BM, Preisser WC, Acosta R, Eckerlin RP (2020) Checklist of ectoparasites of cricetid and heteromyid rodents in México/Lista anotada de los ectoparásitos de roedores cricétidos y heterómidos en México. Therya:1179–1173. https://doi.org/10.12933/therya-20-785

  • Linnaeus (1759) Linnaean plant names and their types (Part A)

  • Linneaus (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii, Holmiae. Vol. Tomus I, Editio decima, reformata, i–ii:1–824

  • López-Pérez AM, Sánchez-Montes S, Foley J, Guzmán-Cornejo C, Colunga-Salas P, Pascoe E, Becker I, Delgado-de la Mora J, Licona-Enriquez JD, Suzan G (2019) Molecular evidence of Borrelia burgdorferi sensu stricto and Rickettsia massiliae in ticks collected from a domestic-wild carnivore interface in Chihuahua, Mexico. Ticks Tick-borne Dis 10:1118–1123. https://doi.org/10.1016/j.ttbdis.2019.05.018

    Article  PubMed  Google Scholar 

  • López-Pérez AM, Chaves A et al (2022) Diversity of rickettsiae in domestic, synanthropic, and sylvatic mammals and their ectoparasites in a spotted fever-epidemic region at the western US-Mexico border. Transbound Emerg Dis 69:609–622. https://doi.org/10.1111/tbed.14027

    Article  CAS  PubMed  Google Scholar 

  • Manzoli DE, Antoniazzi LR et al (2013) Multi-level determinants of parasitic fly infection in forest passerines. PLoS ONE 8:e67104. https://doi.org/10.1371/journal.pone.0067104

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Martínez IF (2015) Garrapatas de importancia veterinaria. Capítulo 9. In: Técnicas Para el Diagnóstico de Parásitos con Importancia en Salud Pública o Veterinaria, 1st edn. Conasa Ampave, Mexico D. F., Mexico, pp 258–303

    Google Scholar 

  • Marshall A (1981) The ecology of ectoparasitic insects. Academic Press, London, UK, pp 392–459

    Google Scholar 

  • McIntyre S, Rangel EF, Ready PD, Carvalho BM (2017) Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. Parasit Vectors 10:1–15. https://doi.org/10.1186/s13071-017-2093-9

    Article  Google Scholar 

  • Mearns (1890) Bull Am Mus Nat Hist 2:290

    Google Scholar 

  • Mearns (1898) N Am Fauna 1:18

    Google Scholar 

  • Meerburg BG, Singleton GR, Kijlstra A (2009) Rodent-borne diseases and their risks for public health. Crit Rev Microbiol 35:221–270. https://doi.org/10.1080/10408410902989837

    Article  PubMed  Google Scholar 

  • Merriam (1888) Proc Biol Soc Wash 4:136

    Google Scholar 

  • Merriam (1889) N Am Fauna 1:5

  • Montiel-Armendáriz S, Verdugo C, Juache-Villagrana AE, Jiménez-Vega F, Quezada-Casasola A, Vital-García C, Escárcega-Ávila A (2021) Molecular identification and morphological variations of Dermacentor albipictus collected from two deer species in northern Mexico. Exp Appl Acarol 84:473–484. https://doi.org/10.1007/s10493-021-00613-7

    Article  CAS  PubMed  Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Sci 297:2015–2018. https://doi.org/10.1126/science.10741

    Article  CAS  ADS  Google Scholar 

  • Moyer BR, Drown DM, Clayton DH (2002) Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos 97:223–228. https://doi.org/10.1034/j.1600-0706.2002.970208.x

    Article  ADS  Google Scholar 

  • Murray DL, Cary JR, Keith LB (1997) Interactive effects of sublethal nematodes and nutritional status on snowshoe hare vulnerability to predation. J Anim Ecol. 66:250–264. https://doi.org/10.2307/6026

    Article  Google Scholar 

  • Murray DL, Keith LB, Cary JR (1998) Do parasitism and nutritional status interact to affect production in snowshoe hares? Ecol 79:1209–1222. https://doi.org/10.1890/0012-9658(1998)079[1209:DPANSI]2.0.CO;2

    Article  Google Scholar 

  • Mutz I (2010) Las infecciones emergentes transmitidas por garrapatas. Annales Nestlé (Ed. española) 67:123–134

    Google Scholar 

  • Mysterud A, Byrkjeland R, Qviller L, Viljugrein H (2015) The generalist tick Ixodes ricinus and the specialist tick Ixodes trianguliceps on shrews and rodents in a northern forest ecosystem–a role of body size even among small hosts. Parasi Vectors 8:1–10. https://doi.org/10.1186/s13071-015-1258-7

    Article  CAS  Google Scholar 

  • Nava S, Mastropaolo M, Guglielmone AA, Mangold AJ (2013) Effect of deforestation and introduction of exotic grasses as livestock forage on the population dynamics of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in northern Argentina. Res vet Sci 95:1046–1054. https://doi.org/10.1016/j.rvsc.2013.09.013

    Article  PubMed  Google Scholar 

  • Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x

    Article  ADS  Google Scholar 

  • Perkins SE, Cattadori IM, Tagliapietra V, Rizzoli AP, Hudson P (2003) Empirical evidence for key hosts in persistence of a tick-borne disease. Int J Parasitol 33:909–917. https://doi.org/10.1016/S0020-7519(03)00128-0

    Article  PubMed  Google Scholar 

  • Phillips PL, Welch JB, Kramer M (2014) Development of a spatially targeted field sampling technique for the southern cattle tick, Rhipicephalus microplus, by mapping whitetailed deer, Odocoileus virginianus, habitat in South Texas. J Insect Sci 14. https://doi.org/10.1093/jis/14.1.88

  • Pontifes PA, Fernández-González A, García-Peña GE, Roche B, Suzan G (2022) Drivers of flea abundance in wild rodents across local and regional scales in the Chihuahuan Desert, northwestern Mexico. Ecosphere 13:e4013

    Article  Google Scholar 

  • Presley SJ (2011) Interspecific aggregation of ectoparasites on bats: importance of hosts as habitats supersedes interspecific interactions. Oikos 120:832–841. https://doi.org/10.1111/j.1600-0706.2010.19199.x

    Article  ADS  Google Scholar 

  • R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

    Google Scholar 

  • Rabiee MH, Mahmoudi A, Siahsarvie R, Kryštufek B, Mostafavi E (2018) Rodent-borne diseases and their public health importance in Iran. PLoS Negl Trop Dis 12:e0006256. https://doi.org/10.1371/journal.pntd.0006256

    Article  PubMed  PubMed Central  Google Scholar 

  • Rafinesque (1817) Am Mon Mag 2:43

    Google Scholar 

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12. https://doi.org/10.1186/1471-2105-12-77

  • Roubaud (1932) Published by Robert E. The catalogue of life partnership, Lewis world species flea (Siphonaptera) list

    Google Scholar 

  • Rubio VA, Avila-Flores RR, Osikowicz LM, Bai Y, Suza`n G, Kosoy MY (2014) Prevalence and genetic diversity of Bartonella strains in rodents from Northwestern Mexico. Vector Borne Zoonotic Dis 12:838–845. https://doi.org/10.1089/vbz.2014.1673

    Article  Google Scholar 

  • Rzedowski. (1978) Vegetación de México. Limusa, México, D. F

    Google Scholar 

  • Sánchez-Montes S, Colunga-Salas et al (2021) The genus Rickettsia in Mexico: current knowledge and perspectives. Ticks Tick borne Dis 12:101633. https://doi.org/10.1016/j.ttbdis.2020.101633

    Article  PubMed  Google Scholar 

  • Soares HS, Barbieri AR et al (2015) Ticks and rickettsial infection in the wildlife of two regions of the Brazilian Amazon. Exp Appl Acarol 65:125–140. https://doi.org/10.1007/s10493-014-9851-6

    Article  PubMed  Google Scholar 

  • Strong RP, Tyzzer EE, Sellards AW, Fever O (1915) Second report. J Am Med Assoc 64:806–808

    Article  Google Scholar 

  • Teel PD, Corson MS, Grant WE, Longnecker MT (2003) Simulating biophysical and human factors that affect detection probability of cattle-fever ticks (Boophilus spp.) in semi-arid thornshrublands of South Texas. Ecol modell 170:29–43. https://doi.org/10.1016/j.ecolmodel.2003.05.002

    Article  Google Scholar 

  • Teel PD, Marin SL, Grant WE (1996) Simulation of host-parasite-landscape interactions: influence of season and habitat on cattle fever tick (Boophilus sp.) population dynamics. Ecol Modell 84:19–30. https://doi.org/10.1016/0304-3800(94)00142-1

    Article  Google Scholar 

  • Torr (1859) Botany 2:213–214

    Google Scholar 

  • Westwood (1875) Published by R E Lewis in world species flea (Siphonaptera) list. The Catalogue of Life Partnership

    Google Scholar 

  • Wheeler (1878) Botany 272:6

    Google Scholar 

  • Whitaker JO Jr, Wrenn WJ, Lewis RE (1993) Parasites. In: Genoways HH, Brown JH (eds) Biology of the heteromyidae Special Publications no 10. The American Society of Mammalogists, Lawrence, pp 386–478

    Google Scholar 

  • Woodhouse (1853) Proc Acad Nat Sci Philadelphia 6:224

    Google Scholar 

  • Yoder JA, Benoit JB, Rellinger EJ, Tank JL (2006) Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus. Med Vet Entomol 20:365–372. https://doi.org/10.1111/j.1365-2915.2006.00642.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Don Bruno and Rancho Las Palmas for access to their lands, J. Garza for help identifying ectoparasites, and J Fernandez Fernández for assistance.

Funding

We thank Consejo Nacional de Ciencia y Tecnologia -INFR-2014-01-224673 for partial funding to make this study possible.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by CV-G, CIPM, AV-R, CE-F, and DMB-R; ectoparasite identification and analysis was performed by RA, CIPM, and AV-R; validation and statistical analysis were performed by ABG-C, JFA, and JMM-C. The first draft of the manuscript was written by CV-G and DMB-R; and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cuauhcihuatl Vital-García.

Ethics declarations

Ethical approval

Animal handling protocols were approved by Secretary of Environment and Natural Resources in Mexico (SGPA/DGVS/00216B/1B, SGPA/DGVS/02403/19) and the Institution welfare and ethics committee.

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no conflict of interests.

Additional information

Section Editor: Boris Krasnov

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vital-García, C., Beristain-Ruíz, D.M., Acosta, R. et al. Ecological factors shaping ectoparasite communities on heteromyid rodents at Médanos de Samalayuca. Parasitol Res 123, 85 (2024). https://doi.org/10.1007/s00436-023-08098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00436-023-08098-6

Keywords

Navigation