Skip to main content

Advertisement

Log in

Drug-induced reactive oxygen species–mediated inhibitory effect on growth of Trypanosoma evansi in axenic culture system

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trypanosoma evansi, an extracellular haemoflagellate, has a wide range of hosts receptive and susceptible to infection, in which it revealed highly inconsistent clinical effects. Drugs used for the treatment of trypanosomosis have been utilized for more than five decades and have several problems like local and systemic toxicity. In the present investigation, imatinib and sorafenib were selected as drugs as they are reported to have the potential to cause reactive oxygen species (ROS)–mediated effect in cancer cells. Both have also been reported to have potential against T. brucei, T. cruzi and Leishmania donovani. To date, imatinib and sorafenib have not evaluated for their growth inhibitory effect against T. evansi. Imatinib and sorafenib showed significant (p < 0.001) inhibition on parasite growth and multiplication with IC50 (50% inhibitory concentration) values 6.12 μM and 0.33 μM respectively against T. evansi. Both the drug molecules demonstrated for the generation of ROS in T. evansi and were found up to 65% increased level of ROS as compared with negative control in the axenic culture system. Furthermore, different concentrations of imatinib and sorafenib were found non-toxic on horse peripheral blood mononuclear cells and Vero cell lines. Also, in conclusion, our results demonstrated that imatinib- and sorafenib-induced generation of ROS contributed inhibitory effect on the growth of Trypanosoma evansi in an axenic culture system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beckmann S, Long T, Scheld C, Geyer R, Caffrey CR, Grevelding CG (2014) Serum albumin and α-1 acid glycoprotein impedes the killing of Schistosoma mansoni by the tyrosine kinase inhibitor imatinib. Int J Parasitol Drugs Drug Resist 4:287–295

    Article  PubMed Central  PubMed  Google Scholar 

  • Behera R, Thomas SM, Mensa-Wilmot K (2014) New chemical scaffolds for human african trypanosomiasis lead discovery from a screen of tyrosine kinase inhibitor drugs. Antimicrob Agents Chemother 58(4):2202–2210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bolisetty S, Jaimes EA (2013) Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 14(3):6306–6344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bombaça AC, Viana PG, Santos AC, Silva TL, Rodrigues AB, Guimarães AC, Goulart MO, da Silva Júnior EN, Menna-Barreto RF (2019) Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles. Free Radic Biol Med 130:408–418

    Article  CAS  PubMed  Google Scholar 

  • Buro C, Beckmann S, Oliveira KC, Dissous C, Cailliau K, Marhöfer RJ, Selzer PM, Verjovski-Almeida S, Grevelding CG (2014) Imatinib treatment causes substantial transcriptional changes in adult Schistosoma mansoni in vitro exhibiting pleiotropic effects. PLoS Negl Trop Dis 8:e2923

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carnes J, Anupama A, Balmer O, Jackson A, Lewis M, Brown R, Cestari I, Desquesnes M, Gendrin C, Hertz-Fowler C, Imamura H (2015) Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl Trop Dis 8:e3404

    Article  CAS  Google Scholar 

  • Chang SP, Shen SC, Lee WR, Yang LL, Chen YC (2011) Imatinib mesylate induction of ROS-dependent apoptosis in melanoma B16F0 cells. J Dermatol Sci 62(3):183–191

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhong Z, Xu Z, Chen L, Wang Y (2010) 2′, 7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res 44(6):587–604

    Article  CAS  PubMed  Google Scholar 

  • Coriat R, Nicco C, Chereau C, Mir O, Alexandre J, Ropert S, Weill B, Chaussade S, Goldwasser F, Batteux F (2012) Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther 11(10):2284–2293

    Article  CAS  PubMed  Google Scholar 

  • Desquesnes M, Biteau-Coroller F, Bouyer J, Dia ML, Foil L (2009) Development of a mathematical model for mechanical transmission of trypanosomes and other pathogens of cattle transmitted by tabanids. Int J Parasitol 39(3):333–346

    Article  PubMed  Google Scholar 

  • Desquesnes M, Dargantes A, Lai DH, Lun ZR, Holzmuller P, Jittapalapong S (2013) Trypanosoma evansi and surra: a review and perspectives on transmission, epidemiology and control, impact, and zoonotic aspects. Biomed Res Int 2013:1–20

    Google Scholar 

  • Dichiara M, Marrazzo A, Prezzavento O, Collina S, Rescifina A, Amata E (2017) Repurposing of human kinase inhibitors in neglected protozoan diseases. Chem Med Chem 12(16):1235–1253

    Article  CAS  PubMed  Google Scholar 

  • Ferreira DD, Mesquita JT, da Costa Silva TA, Romanelli MM, Batista DDGJ, da Silva CF, da Gama ANS, Neves BJ, Melo-Filho CC, Soeiro MDNC, Andrade CH (2018) Efficacy of sertraline against Trypanosoma cruzi: an in vitro and in silico study. J Venom Anim Toxins incl Trop Dis 24(1):1–12

    Article  CAS  Google Scholar 

  • Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE (2011) Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One 6(2):e14666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE (2013) Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. J Nat Prod 76(8):1505–1508

    Article  CAS  PubMed  Google Scholar 

  • Fuss IJ, Kanof ME, Smith PD, Zola H (2009) Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr Protoc Immunol Chapter 7:85(1)

    Google Scholar 

  • Goswami D, Gurule S, Lahiry A, Anand A, Khuroo A, Monif T (2016) Clinical development of imatinib: an anticancer drug. Future Sci OA 2(1):FSO92

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guyett PJ, Xia S, Swinney DC, Pollastri MP, Mensa-Wilmot K (2016) Glycogen synthase kinase 3β promotes the endocytosis of transferrin in the African trypanosome. ACS Infect Dis 2(7):518–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirumi H, Hirumi K (1989) Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol 75:985–989

    Article  CAS  PubMed  Google Scholar 

  • Johnson LN (2009) Protein kinase inhibitors: contributions from structure to clinical compounds. Q Rev Biophys 42(1):1–40

    Article  CAS  PubMed  Google Scholar 

  • Kim JL, Lee DH, Jeong S, Kim BR, Na YJ, Park SH, Jo MJ, Jeong YA, Oh SC (2019) Imatinib-induced apoptosis of gastric cancer cells is mediated by endoplasmic reticulum stress. Oncol Rep 41(3):1616–1626

    CAS  PubMed  Google Scholar 

  • Kumar R, Kumar S, Khurana SK, Yadav SC (2013) Development of an antibody-ELISA for seroprevalence of Trypanosoma evansi in equids of North and North-western regions of India. Vet Parasitol 196(3–4):251–257

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh J, Singh R, Kumar S, Yadav SC (2015) Comparative efficacy of different in vitro cultivation media for Trypanosoma evansi isolated from different mammalian hosts inhabiting different geographical areas of India. J Parasit Dis 39(2):174–178

    Article  PubMed  Google Scholar 

  • Kumar R, Sharma P, Kumar GD, Jain S (2016) Recent development in identification of potential novel therapeutic targets against trypanosomatids. Curr Top Med Chem 16(20):2303–2315

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Jain S, Kumar S, Sethi K, Kumar S, Tripathi BN (2017) Impact estimation of animal trypanosomosis (surra) on livestock productivity in India using simulation model: current and future perspective. Vet Parasitol Reg Stud Reports 10:1–12

    PubMed  Google Scholar 

  • Lange M, Abhari BA, Hinrichs TM, Fulda S, Liese J (2016) Identification of a novel oxidative stress induced cell death by Sorafenib and oleanolic acid in human hepatocellular carcinoma cells. Biochem Pharmacol 118:9–17

    Article  CAS  PubMed  Google Scholar 

  • Manuja A, Kumar B, Chopra M, Bajaj A, Kumar R, Dilbaghi N, Kumar S, Singh S, Riyesh T, Yadav SC (2016) Cytotoxicity and genotoxicity of a trypanocidal drug quinapyramine sulfate loaded-sodium alginate nanoparticles in mammalian cells. Int J Biol Macromol 88:146–155

    Article  CAS  PubMed  Google Scholar 

  • Merritt C, Silva LE, Tanner AL, Stuart K, Pollastri MP (2014) Kinases as druggable targets in trypanosomatid protozoan parasites. Chem Rev 114(22):11280–11304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mihok S, Maramba O, Munyoki E, Kagoiya J (1995) Mechanical transmission of Trypanosoma spp. by African Stomoxynae (Diptera: Muscidae). Trop Med Parasitol 46(2):103–105

    CAS  PubMed  Google Scholar 

  • Naula C, Parsons M, Mottram JC (2005) Protein kinases as drug targets in trypanosomes and Leishmania. Biochem Biophys Acta 1754:151–159

    CAS  PubMed  Google Scholar 

  • O’Connell EM, Bennuru S, Steel C, Dolan MA, Nutman TB (2015) Targeting filarial Abl-like kinases: orally available, food and drug administration-approved tyrosine kinase inhibitors are microfilaricidal and macrofilaricidal. J Infect Dis 212:684–693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Connell EM, Kamenyeva O, Lustigman S, Bell A, Nutman TB (2017) Defining the target and the effect of imatinib on the filarial c-Abl homologue. PLoS Negl Trop Dis 11(7):e0005690

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pardanani A, Tefferi A (2004) Imatinib targets other than bcr/abl and their clinical relevance in myeloid disorders. Blood 104(7):1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Patel BB, He YA, Li XM, Frolov A, Vanderveer L, Slater C, Schilder RJ, Von Mehren MARGARET, Godwin AK, Yeung AT (2008) Molecular mechanisms of action of imatinib mesylate in human ovarian cancer: a proteomic analysis. Cancer Genom Proteom 5(3–4):137–149

    CAS  Google Scholar 

  • Pathak V, Colah R, Ghosh K (2015) Tyrosine kinase inhibitors: new class of antimalarials on the horizon? Blood Cells Mol Dis 55:119–126

    Article  CAS  PubMed  Google Scholar 

  • Patt Y, Rojas-Hernandez C, Fekrazad HM, Bansal P, Lee FC (2017) Phase II trial of sorafenib in combination with capecitabine in patients with hepatocellular carcinoma: INST 08-20. Oncologist 22(10):1158–e116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranieri G, Gadaleta-Caldarola G, Goffredo V, Patruno R, Mangia A, Rizzo A, Sciorsci L, Gadaleta C (2012) Sorafenib (BAY 43-9006) in hepatocellular carcinoma patients: from discovery to clinical development. Curr Med Chem 19(7):938–944

    Article  CAS  PubMed  Google Scholar 

  • Sanderson L, Yardley V, Croft SL (2014) Activity of anti-cancer protein kinase inhibitors against Leishmania spp. J Antimicrob Chemother 69(7):1888–1891

    Article  CAS  PubMed  Google Scholar 

  • Shegokar VR, Powar RM, Joshi PP, Bhargava A, Dani VS, Katti R, Zare VR, Khanande VD, Jannin J, Truc P (2006) Human trypanosomiasis caused by Trypanosoma evansi in a village in India: preliminary serologic survey of the local population. Am J Trop Med Hyg 75(5):869–870

    Article  PubMed  Google Scholar 

  • Simões-Silva MR, De Araújo JS, Peres RB, Da Silva PB, Batista MM, De Azevedo LD, Bastos MM, Bahia MT, Boechat N, Soeiro MNC (2019) Repurposing strategies for Chagas disease therapy: the effect of imatinib and derivatives against Trypanosoma cruzi. Parasitology 146(8):1006–1012

  • Teppo HR, Soini Y, Karihtala P (2017) Reactive oxygen species-mediated mechanisms of action of targeted cancer therapy. Oxid Med Cell Longev 2017:1485283

  • Van Vinh Chau N, Buu Chau L, Desquesnes M, Herder S, Phu Huong Lan N, Campbell JI, Van Cuong N, Yimming B, Chalermwong P, Jittapalapong S, Ramon Franco J (2016) A clinical and epidemiological investigation of the first reported human infection with the zoonotic parasite Trypanosoma evansi in Southeast Asia. Clin Infect Dis 62(8):1002–1008

    Article  PubMed Central  PubMed  Google Scholar 

  • Wan J, Liu T, Mei L, Li J, Gong K, Yu C, Li W (2013) Synergistic antitumour activity of sorafenib in combination with tetrandrine is mediated by reactive oxygen species (ROS)/Akt signaling. Br J Cancer 109(2):342–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wetzel DM, McMahon-Pratt D, Koleske AJ (2012) The Abl and Arg kinases mediate distinct modes of phagocytosis and are required for maximal Leishmania infection. Mol Cell Biol 32(15):3176–3186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the Director, ICAR-National Research Centre on Equines, Hisar, India, for providing all the necessary facilities for conducting this study.

Funding

The financial support from ICAR-New Delhi under the National Fellow Project is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajender Kumar.

Ethics declarations

Prior approval was taken for animal experimentation in the present study from Institutional Animal Ethics Committee of ICAR-NRCE, Hisar.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Sarah Hendrickx

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Rani, R., Kumar, S. et al. Drug-induced reactive oxygen species–mediated inhibitory effect on growth of Trypanosoma evansi in axenic culture system. Parasitol Res 119, 3481–3489 (2020). https://doi.org/10.1007/s00436-020-06861-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06861-7

Keywords

Navigation