Skip to main content
Log in

Discovery of Arostrilepis tapeworms (Cyclophyllidea: Hymenolepididae) and new insights for parasite species diversity from Eastern North America

  • Immunology and Host-Parasite Interactions - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Species of the genus Arostrilepis were discovered and definitively identified for the first time in rodents from geographically disparate localities along the Appalachian Mountain range of eastern North America (West Virginia, Virginia, and Maine). These are the first confirmed records for species of Arostrilepis occurring east of the Rocky Mountains and the Mississippi River in North America. Arostrilepis gardneri n. sp. is described on the basis of specimens obtained from two phylogenetically divergent rodent hosts: Southern Red-Backed Vole Myodes gapperi (Cricetidae: Arvicolinae) (from West Virginia) and the Woodland Jumping Mouse Napaeozapus insignis (Dipodidae: Zapodinae) (West Virginia, Virginia, and Maine). Additionally, in a mixed infection, specimens of Arostrilepis insperata n. sp. were also found in a Southern Red-Backed Vole from West Virginia. These previously unknown species are primarily distinguished from congeners based on shape, dimensions, and spination (pattern, shape, and size of spines) of the cirrus. Specimens of A. gardneri n. sp. are further characterized by the relative position and length of the cirrus-sac, arrangement of the testes, and relative size of the external seminal vesicle and seminal receptacle. Specimens of A. insperata n. sp. are structurally most similar to A. macrocirrosa from the western Nearctic and Palearctic but with consistently greater dimensions for the cirrus-sac, testes, and seminal receptacle. Phylogenetic analysis of Arostrilepis spp. using partial sequences of the mitochondrial cytochrome b gene and the nuclear second ribosomal internal transcribed spacer strongly supported the status of A. gardneri n. sp. and A. insperata n. sp. within an unresolved clade of congeners in Red-Backed Voles (Myodini and species of Myodes). Our observations extend the known geographic distribution for species of Arostrilepis to the Appalachian Mountains in either a disjunct or possibly continuous but patchy range across North America. Prior observations, summarizing field and museum collections, had suggested that geographic ranges for a diverse assemblage of Arostrilepis in North America were largely restricted to the north-western region of the continent, with historical connections to Beringia and Eurasia. Recognition of a more extensive distribution is consistent with a history of episodic biotic expansion and isolation under a dynamic of taxon pulses for arvicoline rodents and an associated parasite fauna in the Nearctic during the Quaternary. Occurrence in a dipodid rodent represents an event of host colonization from an arvicoline source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agosta SJ, Janz N, Brooks DR (2010) How specialists can be generalists: resolving the ‘parasite paradox’ and implications for emerging infectious disease. Zoologia 27:151–162. https://doi.org/10.1590/51984-46702010000200001

    Article  Google Scholar 

  • Araujo SBL, Braga MP, Brooks DR, Agosta S, Hoberg EP, von Hathental F, Boeger WA (2015) Understanding host-switching by ecological fitting. PLoS One 10(10):e0139225. https://doi.org/10.1371/journal.pone.0139225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks DR, Hoberg EP, Boeger W (2019) The Stockholm paradigm: climate change and emerging disease. University of Chicago Press, p 423. https://doi.org/10.7208/chicago/9780226632582.001.0001

  • Cook JA, Hoberg EP, Koehler A, Henttonen H, Wickström L, Haukisalmi V, Galbreath K, Chernyavski F, Dokuchaev N, Lahzuhtkin A, MacDonald SO, Hope A, Waltari E, Runck A, Veitch A, Popko R, Jenkins E, Kutz S, Eckerlin R (2005) Beringia: intercontinental exchange and diversification of high latitude mammals and their parasites during the Pliocene and quaternary. Mammal Stud 30:S33–S44. https://doi.org/10.3106/1348-6160(2005)30[33:BIEADO]2.0.CO;2

    Article  Google Scholar 

  • Cook JA, Galbreath KE, Bell KC, Campbell ML, Carrière S, Colella JP, Dawson NG, Dunnam JL, Eckerlin RP, Greiman SE, Federov V, Hass GMS, Haukisalmi V, Henttonen H, Hope AG, Jackson D, Jung T, Koehler AVA, Kinsella M, Krejsa D, Kutz SJ, Liphardt S, MacDonald SO, Malaney JL, Makarikov A, Martin J, Mclean B, Mulders R, Nyamsuren B, Talbot SL, Tkach V, Tsvetkova A, Toman HM, Waltari E, Whitman J, Hoberg EP (2017) The Beringian coevolution project: holistic collections of mammals and associated parasites reveal novel perspectives on changing environments in the north. Arct Sci 3:585–617. https://doi.org/10.1139/as-2016-0042

    Article  Google Scholar 

  • Doran DJ (1954) A catalogue of the protozoa and helminths of north American rodents II. Cestodes. Am Midl Nat 52:469–480

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  Google Scholar 

  • Erickson AB (1938) Parasites of some Minnesota Cricetidae and Zapodidae, and a host catalogue of helminth parasites of native American mice. Am Midl Nat 20:575–589

    Article  Google Scholar 

  • Fedorov KP (1986) Patterns of spatial distribution of parasitic worms. Nauka, Novosibirsk, p 256 (In Russian)

    Google Scholar 

  • Galbreath KE, Hoberg EP (2015) Host responses to historical climate change shape parasite communities in North America’s intermountain west. Folia Zool 64:218–232. https://doi.org/10.25225/fozo.v64.i3.a4.2015

    Article  Google Scholar 

  • Galbreath KE, Ragaliauskaitė K, Kontrimavicius LV, Makarikov AA, Hoberg EP (2013) A widespread distribution for Arostrilepis tenuicirrosa (Eucestoda: Hymenolepididae) in Myodes voles (Cricetidae: Arvicolinae) from the Palearctic based on molecular and morphological criteria. Historical and biogeographic implications. Acta Parasitol 58:441–452. https://doi.org/10.2478/s11686-013-0170-6

    Article  PubMed  Google Scholar 

  • Galbreath KE, Hoberg EP, Cook JA, Bell KC, Campbell ML, Dunnum JL, Eckerlin RP, Gardner SL, Greiman SE, Henttonen H, Agustín Jiménez F, Koehler VA, Tkach VV, Hope AG (2019) Building an integrated infrastructure for exploring biodiversity: field collections and archives of mammals and parasites. J Mammal 100:382–393. https://doi.org/10.1093/jmammal/gyz048

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulyaev VD, Chechulin AI (1997) Arostrilepis microtis n. sp. (Cyclophyllidea: Hymenolepididae), a new cestode species from Siberian rodents. Res Rev Parasitol 57:103–107

    Google Scholar 

  • Haukisalmi V, Hardman LM, Foronda P, Feliu C, Laakonen J, Niemimaa J, Lehtonen JT, Henttonen H (2010) Systematic relationships of hymenolepidid cestodes of rodents and shrews inferred from sequences of 28S ribosomal RNA. Zool Scr 39:631–641. https://doi.org/10.1111/j.1463-6409.2010.00444.x

    Article  Google Scholar 

  • Haukisalmi V, Hardman LM, Hoberg EP, Henttonen H (2014) Phylogenetic relationships and taxonomic revision of Paranoplocephala Lühe, 1910 sensu lato (Cestoda, Cyclophyllidea, Anoplocephalidae). Zootaxa 3873:371–415. https://doi.org/10.11646/zootaxa.3873.4.3

    Article  PubMed  Google Scholar 

  • Hoberg EP, Brooks DR (2008) A macroevolutionary mosaic: episodic host-switching, geographic colonization, and diversification in complex host-parasite systems. J Biogeogr 35:1533–1550. https://doi.org/10.1111/j.1365-2699.2008.01951.x

    Article  Google Scholar 

  • Hoberg EP, Brooks DR (2015) Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos Trans R Soc B 370:20130553. https://doi.org/10.1098/rstb.2013.0553

    Article  Google Scholar 

  • Hoberg EP, Kutz SJ, Galbreath KE, Cook J (2003) Arctic biodiversity: from discovery to faunal baselines- revealing the history of a dynamic ecosystem. J Parasitol 89(supplement):S-84–S-95

    Google Scholar 

  • Hoberg EP, Galbreath KE, Cook JA, Kutz SJ, Polley L (2012) Northern host-parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. In: Rollinson D, Hays SI (eds) Adv Parasitol. 79. Elsevier, pp 1–97. https://doi.org/10.1016/B978-0-12-398457-9.00001-9

    Google Scholar 

  • Hoberg EP, Makarikov AA, Tkach VV, Meagher SA, Nims TN, Eckerlin RE, Galbreath KE (2016) Insights on the host associations and geographic distribution of Hymenolepis folkertsi (Cestoda: Hymenolepididae) among rodents across temperate latitudes of North America. Parasitol Res 115:4627–4638. https://doi.org/10.1007/s00436-016-5255-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoberg EP, Cook JA, Agosta SJ, Boeger W, Galbreath KE, Laaksonen S, Kutz SJ, Brooks DR (2017) Arctic systems in the quaternary: ecological collision, faunal mosaics and the consequences of wobbling climate. J Helminthol 91:409–421. https://doi.org/10.1017/S0022149X17000347

    Article  CAS  PubMed  Google Scholar 

  • Holden ME, Musser GG (2005) Family Dipodidae. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, Maryland, pp 871–893

    Google Scholar 

  • Kohli BA, Speer KA, Kilpatrick CW, Batsaikhan N, Damdinbaza D, Cook JA (2014) Multilocus systematics and non-punctuated evolution of Holarctic Myodini (Rodentia: Arvicolinae). Mol Phylogenet Evol 76:18–29. https://doi.org/10.1016/j.ympev.2014.02.019

    Article  PubMed  Google Scholar 

  • Kohli BA, Federov VB, Waltari E, Cook JA (2015) Phylogeography of a Holarctic rodent (Myodes rutilus): testing high-latitude biogeographical hypotheses and the dynamics of range shifts. J Biogeogr 42:377–389. https://doi.org/10.1111/jbi.12433

    Article  Google Scholar 

  • Kontrimavichus VL, Smirnova LV (1991) Hymenolepis beringiensis sp. n. from the Siberian lemming (Lemmus sibiricus Kerr) and the problem of the sibling species in helminthology. In: Krasnoschekov GP, Roitman VA, Sonin MD, Chesnova LV (eds) Evoljucia parazitov. Materialy I Vsesojuznogo Simpoziuma, Akademiya Nauk SSSR, Tol’yatti, pp 90–104 (In Russian)

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  • Linstow O (1901) Taenia horrida, Tetrabothrium macrocephalum, und Heterakis distans. Archiv Naturgesch Berlin 67:1–10

    Google Scholar 

  • Linzey DW (2001) Mammals of the Great Smoky Mountains National Park. University of Tennessee Press, Knoxville

    Google Scholar 

  • Makarikov AA, Hoberg EP (2016) Broadening diversity in the Arostrilepis horrida complex: Arostrilepis kontrimavichusi n. sp. (Cyclophyllidea: Hymenolepididae) in the western red-backed vole Myodes californicus (Merriam) (Cricetidae: Arvicolinae) from temperate latitudes of the Pacific northwest, North America. Syst Parasitol 93:467–477. https://doi.org/10.1007/s11230-016-9640-1

    Article  PubMed  Google Scholar 

  • Makarikov AA, Kontrimavichus VL (2011) A redescription of Arostrilepis beringiensis (Kontrimavichus et Smirnova, 1991) and descriptions of two new species from Palearctic microtine rodents, Arostrilepis intermedia sp. n. and A. janickii sp. n. (Cyclophyllidea: Hymenolepididae). Folia Parasitol 58:289–301. https://doi.org/10.14411/fp.2011.029

    Article  PubMed  Google Scholar 

  • Makarikov AA, Gulyaev VD, Kontrimavichus VL (2011) A redescription of Arostrilepis horrida (Linstow, 1901) and descriptions of two new species from Palearctic microtine rodents, Arostrilepis macrocirrosa sp. n. and Arostrilepis tenuicirrosa sp. n. (Cestoda: Hymenolepididae). Folia Parasitol 58:108–120. https://doi.org/10.14411/fp.2011.011

    Article  PubMed  Google Scholar 

  • Makarikov AA, Gardner SL, Hoberg EP (2012) New species of Arostrilepis (Eucestoda: Hymenolepididae) in members of Cricetidae and Geomyidae (Rodentia) from the Western Nearctic. J Parasitol 98:617–626. https://doi.org/10.1645/GE-2943.1

    Article  PubMed  Google Scholar 

  • Makarikov AA, Galbreath KE, Hoberg EP (2013) Parasite diversity at the Holarctic nexus: species of Arostrilepis (Eucestoda: Hymenolepididae) in voles and lemmings (Cricetidae: Arvicolinae) from greater Beringia. Zootaxa 3608:401–439. https://doi.org/10.11646/zootaxa.3608.6.1

    Article  PubMed  Google Scholar 

  • Makarikov AA, Nims TN, Galbreath KE, Hoberg EP (2015) Hymenolepis folkertsi n. sp. (Eucestoda: Hymenolepididae) in the oldfield mouse Peromyscus polionotus (Wagner) (Rodentia: Cricetidae: Neotominae) from the southeastern Nearctic with comments on tapeworm faunal diversity among deer mice. Parasitol Res 114:2107–2117. https://doi.org/10.1007/s00436-015-4399-x

    Article  PubMed  Google Scholar 

  • Makarikov AA, Dokuchaev NE, Konyaev SV (2016) Cestodes of rodents in northern Priokhotye. Bulletin of the North-East Scientific Center, Russian Academy of Sciences Far East Branch 4:52–61 (in Russian). http://vestnik.north-east.ru/2016/n4/r_Makarikov.htm

    Google Scholar 

  • Mas-Coma S, Tenora F (1997) Proposal of Arostrilepis n. gen. (Cestoda: Hymenolepididae). Res Rev Parasitol 57:93–101

  • Musser GG, Carelton MD (2005) Superfamily Muroidea. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, Maryland, pp 894–1522

    Google Scholar 

  • Nylin S, Agosta S, Bensch S, Boeger WA, Braga MP, Brooks DR, Forister ML, Hambäck PA, Hoberg EP, Nyman T, Schäpers A, Stigall AL, Wheat CW, Österling M, Janz N (2018) Embracing colonizations: a new paradigm for species association dynamics. Trends Ecol Evol 33:4–14. https://doi.org/10.1016/j.tree.2017.10.005

    Article  PubMed  Google Scholar 

  • Okamoto M, Agatsuma T, Kurosawa T, Ito A (1997) Phylogenetic relationships of three hymenolepidid species inferred from nuclear ribosomal and mitochondrial DNA sequences. Parasitology 115:661–666

    Article  CAS  Google Scholar 

  • Patton JL (2005) Family Geomyidae. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, Maryland, pp 859–870

    Google Scholar 

  • Rausch RL (1951) Biotic interrelationships of helminth parasitism. Public Health Rep:66928–66934

  • Rausch RL (1952) Studies on the helminth fauna of Alaska. XI Helminth parasites of microtine rodents – taxonomic considerations. J Parasitol 38:415–444. https://doi.org/10.2307/3273922

    Article  CAS  PubMed  Google Scholar 

  • Rausch RL (1957) Distribution and specificity of helminths in microtine rodents: evolutionary implications. Evolution 11:361–368

    Article  Google Scholar 

  • Rausch RL, Tiner JD (1949) Studies on the parasitic helminths of the north central states. II. Helminths of voles (Microtus spp.) preliminary report. Am Midl Nat 41:665–694

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Runck AM, Cook JA (2005) Postglacial expansion of the southern red-backed vole (Clethrionomys gapperi) in North America. Mol Ecol 14:1445–1456. https://doi.org/10.1111/j.1365-294X.2005.02501.x

    Article  CAS  PubMed  Google Scholar 

  • Schiller EL (1952) Studies on the helminth fauna of Alaska. X. Morphological variation in Hymenolepis horrida (von Linstow, 1901) (Cestoda: Hymenolepididae). J Parasitol 38:554–568. https://doi.org/10.2307/3273983

    Article  CAS  PubMed  Google Scholar 

  • Sikes RS, The Animal Care and Use Committee of the American Society of Mammalogists (2016) Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal 97:663–688. https://doi.org/10.1093/jmammal/gyw078

    Article  PubMed  PubMed Central  Google Scholar 

  • Spassky AA (1947) The phenomenon of confluence of proglottides and uteri in cestodes. Doklady Akademii Nauk SSSR 58:723–724 (In Russian)

  • Spassky AA (1963) Hymenolepidid celstodes—tapeworms of wild and domestic birds, vol 2. Izdatel’stvo Akademii Nauk SSSR, Moscow 418 pp. (In Russian)

    Google Scholar 

  • Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4:vey016. https://doi.org/10.1093/ve/vey016

    Article  PubMed  PubMed Central  Google Scholar 

  • Swofford DL (2000) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Voge M (1952) Variation in some unarmed Hymenolepididae (Cestoda) from rodents. In: Kirby H, Eakin RM, Miller A, Stern C (eds) Univ Calif Pubs Zool 57, pp 1–52

    Google Scholar 

  • Whitaker JO Jr, Hamilton WJ (1998) Mammals of the eastern United States. Cornell University Press, Ithaca, p 583

    Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Unpublished Ph.D. dissertation, University of Texas at Austin, p 1–115

Download references

Acknowledgments

Dr. Alfred L. Gardner contributed to field collections in Virginia and Maine and prepared the symbiotype host specimens for deposition in the mammal collections of National Museum of Natural History. We thank the Virginia Division of Game and Inland Fisheries, the West Virginia Division of Natural Resources, and the Maine Division of Natural Resources for granting Scientific Collecting Permits. Funding which contributed to field collections was also provided from the Washington Biologists Field Club (to RPE).

Funding

AAM was supported in part by the Federal Fundamental Scientific Research Program for 2013–2020, grant no. VI.51.1.5 (АААА-А16-116121410121-7) and the Russian Foundation for Basic Research (Project No. 17-04-00227-a). RPE received partial funding for field collections from the Washington Biologists Field Club. Our study represents a continuing contribution of the Beringian Coevolution Project and the Integrated Inventories of Biomes of the Arctic through grants from the National Science Foundation (USA) to Joseph A. Cook, EPH, and KEG (DEB- 0196095, 0415668, 1250810, and 1256943).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arseny A. Makarikov.

Ethics declarations

Mammal specimens were collected under state scientific collector permits (Maine, Virginia, and West Virginia) and guidelines of the National Museum of Natural History Institutional Animal Care and Use Committee and American Society of Mammalogists (Sikes and The Animal Care and Use Committee of the American Society of Mammalogists 2016).

Ethical approval

The authors carefully reviewed the ethical standards of the journal and hereby certify that the procedures used with the investigated species comply fully with those standards. All applicable institutional, national, and international guidelines for the care and use of animals were followed.

Additional information

Section Editor: Georg von Samson-Himmelstjerna

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarikov, A.A., Galbreath, K.E., Eckerlin, R.P. et al. Discovery of Arostrilepis tapeworms (Cyclophyllidea: Hymenolepididae) and new insights for parasite species diversity from Eastern North America. Parasitol Res 119, 567–585 (2020). https://doi.org/10.1007/s00436-019-06584-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-019-06584-4

Keywords

Navigation