Parasitology Research

, Volume 118, Issue 6, pp 1999–2004 | Cite as

Vermamoeba vermiformis as etiological agent of a painful ulcer close to the eye

  • Patrick L. Scheid
  • Thiên-Trí Lâm
  • Ulrich Sinsch
  • Carsten BalczunEmail author
Protozoology - Short Communication


In the present article, we report on the identification of Vermamoeba (Hartmannella) vermiformis as the etiological agent of a tissue infection close to the eye of a female patient. Laboratory examination revealed no involvement of any pathogenic bacteria or fungi in the tissue infection. V. vermiformis was identified by cultivation and morphology of trophozoites and cysts as well as phylogenetic analysis of nuclear 18S rDNA. The lesion improved in the course of 4 weeks by application of zinc paste.


Free-living amoebae Vermamoeba vermiformis Hartmannella vermiformis Tissue infection 



The author would like to thank Dr. David Lam (MD, MPH, Shaman Medical Consulting) for review and English language editing of the article and S. Njul for the technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abedkhojasteh H, Niyyati M, Rahimi F, Heidari M, Farnia S, Rezaeian M (2013) First report of Hartmannella keratitis in a cosmetic soft contact lens wearer in Iran. Iran J Parasitol 8:481–485Google Scholar
  2. Adl SM, Bass D, Lane CE et al (2019) Revision to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Micobiol 66:4–119Google Scholar
  3. Aitken D, Hay J, Kinnear F, Kirkness C, Lee W, Seal D (1996) Amebic keratitis in a wearer of disposable contact lenses due to a mixed Vahlkampfia and Hartmannella infection. Ophthalmology 103:485–494CrossRefGoogle Scholar
  4. Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  5. Balczun C, Scheid PL (2016) Detection of Balamuthia mandrillaris DNA in the storage case of contact lenses in Germany. Parasitol Res 115:2111–2114CrossRefGoogle Scholar
  6. Balczun C, Scheid P (2017) Free-living amoebae as hosts for and vectors of intracellular microorganisms with public health significance. Viruses 9:E65Google Scholar
  7. Bouchoucha I, Aziz A, Hoffart L, Drancourt M (2016) Repertoire of free-living protozoa in contact lens solutions. BMC Ophthalmol 16:191CrossRefGoogle Scholar
  8. Brieland JK, Fantone JC, Remick DG, LeGendre M, McClain M, Engleberg NC (1997) The role of Legionella pneumophila - infected Hartmannella vermiformis as an infectious particle in a murine model of Legionaires’ disease. Infect Immun 65:5330–5333Google Scholar
  9. Cabello-Vílchez A, Mena R, Zuñiga J, Cermeño P, Martín-Navarro C, González A, López-Arencibia A, Reyes-BatlleM PJE, Valladares B, Lorenzo-Morales J (2014) Endosymbiotic Mycobacterium chelonae in a Vermamoeba vermiformis strain isolated from the nasal mucosa of an HIV patient in Lima, Peru. Exp Parasitol 145(Suppl):S127–S130CrossRefGoogle Scholar
  10. Cateau E, Delafont V, Hechard Y, Rodier MH (2014) Free-living amoebae: what part do they play in healthcare-associated infections? J Hosp Infect 87:131–140CrossRefGoogle Scholar
  11. De Jonckheere JF, Brown S (1998a) There is no evidence that the free-living ameba Hartmannella is a human parasite. Clin Infect Dis 26:773CrossRefGoogle Scholar
  12. De Jonckheere JF, Brown S (1998b) Is the free-living ameba Hartmannella causing keratitis? Clin Infect Dis 27:1337–1338Google Scholar
  13. De Jonckheere J, Brown S (1999) Non-Acanthamoeba amoebic keratitis. Cornea 18:499–501CrossRefGoogle Scholar
  14. Delafont V, Rodier M-H, Maisonneuve E, Cateau E (2018) Vermamoeba vermiformis: a free-living amoeba of interest. Microb Ecol 76:991–1001CrossRefGoogle Scholar
  15. Dykova I, Pindova Z, Fiala I, Dvorakova H, Machackova B (2005) Fish-isolated strains of Hartmannella vermiformis Page, 1967: morphology, phylogeny and molecular diagnosis of the species in tissue lesions. Folia Parasitol 52:295–303CrossRefGoogle Scholar
  16. Fields B, Nerad T, Sawyer T, King CH, Barbaree JM, Martin WT, Morrill WE, Sanden GN (1990) Characterization of an axenic strain of Hartmannella vermiformis obtained from an investigation of nosocomial legionellosis. J Protozool 37:581–583CrossRefGoogle Scholar
  17. Fouque E, Héchard Y, Hartemann P, Humeau P, Trouilhé M (2015) Sensitivity of Vermamoeba (Hartmannella) vermiformis cysts to conventional disinfectants and protease. J Water Health 13:302–310CrossRefGoogle Scholar
  18. Garcia A, Goñi P, Cieloszyk J, Fernandez M, Calvo-Beguería L, Rubio E, Fillat M, Peleato M, Clavel A (2013) Identification of free-living amoebae and amoeba-associated bacteria from reservoirs and water treatment plants by molecular techniques. Environ Sci Technol 47:3132–3140CrossRefGoogle Scholar
  19. Gast R, Fuerst PA, Byers TJ (1994) Discovery of group I introns in the nuclear small subunit ribosomal genes of Acanthamoeba. Nucl Acids Res 22:592–596CrossRefGoogle Scholar
  20. Gray TB, Cursons RT, Sherwan JF, Rose PR (1995) Acanthamoeba, bacterial, and fungal contamination of contact lens storage cases. Brit J Ophthalmol 79:601–605CrossRefGoogle Scholar
  21. Hsu B, Lin C, Shih F (2009) Survey of pathogenic free-living amoebae and Legionella spp. in mud spring recreation area. Water Res 43:2817–2828CrossRefGoogle Scholar
  22. Inoue T, Asari S, Tahara K, Hayashi K, Kiritoshi A, Shimomura Y (1998) Acanthamoeba keratitis with symbiosis of Hartmannella ameba. Am J Ophthalmol 125:721–723CrossRefGoogle Scholar
  23. Kennedy SM, Devine P, Hurley C, Ooi YS, Collum LMT (1995) Corneal infection associated with Hartmannella vermiformis in contact-lens wearer. Lancet 346:637–638CrossRefGoogle Scholar
  24. Kinnear FB (2001) Non-Acanthamoeba amoebic keratitis. J Inf 42:218–219CrossRefGoogle Scholar
  25. Kinnear FB (2003) Cytopathogenicity of Acanthamoeba, Vahlkampfia and Hartmannella: quantative and qualitative in vitro studies on keratocytes. J Inf 46:228–237CrossRefGoogle Scholar
  26. Kuiper M, Wullings B, Akkermans A, Beumer RR, van der Kooij D (2004) Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70:6826–6833CrossRefGoogle Scholar
  27. Lorenzo-Morales J, Martínez-Carretero E, Batista N, Àlvarez-Marín J, Bahaya Y, Walochnik J, Valladares B (2007) Early diagnosis of amoebic keratitis due to a mixed infection with Acanthamoeba and Hartmannella. Parasitol Res 102:167–169CrossRefGoogle Scholar
  28. Masangkay F, Milanez G, Karanis P, Nissapatorn V (2018) Vermamoeba vermiformis—global trend and future perspective. In: Reference module in earth systems and environmental sciences.
  29. Muchesa P, Leifels M, Jurzik L, Hoorzok K, Barnard T, Bartie C (2017) Coexistence of free-living amoebae and bacteria in selected South African hospital water distribution systems. Parasitol Res 116:155–165CrossRefGoogle Scholar
  30. Murga R, Forster T, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiol Read Engl 147:3121–3126CrossRefGoogle Scholar
  31. Nicholas K, Nicholas H, Deerfield D (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4:14Google Scholar
  32. Page FC (1988) A new key to freshwater and soil Gymnamoebae with instructions for culture. Freshwater Biological Association, Ambleside, UKGoogle Scholar
  33. Page FC (1991) Nackte Rhizopoda. In: Page FC, Siemensma FJ (eds) Nackte Rhizopoda und Heliozoa, Protozoenfauna Band 2. Gustav Fischer Verlag, Stuttgart, New York, pp 7–170Google Scholar
  34. Qvarnstrom Y, Visvesvara G, Sriram R, da Silva A (2006) Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol 44:3589–3595CrossRefGoogle Scholar
  35. Rohr U, Weber S, Michel R, Selenka F, Wilhelm M (1998) Comparison of free-living amoebae in hot water systems of hospitals with isolates from moisty sanitary areas by identifying genera and determining temperature tolerance. Appl Environ Microbiol 64:1822–1824Google Scholar
  36. Scheid P (2014) Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. Parasitol Res 113:2407–2414CrossRefGoogle Scholar
  37. Scheid P (2018) Free-living amoebae and their multiple impacts on environmental health. In: Encyclopedia of environmental health, 2nd Edtion.
  38. Smirnov AV, Chao E, Nassonova ES, Cavalier-Smith T (2011) A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162:545–570CrossRefGoogle Scholar
  39. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  40. Thomas V, Loret JF, Jousset M, Greub G (2008) Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environ Microbiol 10:2728–2745CrossRefGoogle Scholar
  41. Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_ X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 15:4876–4882CrossRefGoogle Scholar
  42. Tsvetkova N, Schild M, Panaiotov K-MR, Gottstein B, Walochnik J, Aspöck H, Lucas MS, Müller N (2004) The identification of free-living environmental isolates of amoebae from Bulgaria. Parasitol Res 92:405–413CrossRefGoogle Scholar
  43. Tyson J, Pearce M, Vargas P, Bagchi S, Mulhern B, Cianciotto N (2013) Multiple Legionella pneumophila type II secretion substrates, including a novel protein, contribute to differential infection of the amoebae Acanthamoeba castellanii, Hartmannella vermiformis, and Naegleria lovaniensis. Infect Immun 81:1399–1410CrossRefGoogle Scholar
  44. Valster R, Wullings B, Bakker G, Smidt H, van der Kooij D (2009) Free-living protozoa in two unchlorinated drinking water supplies, identified by phylogenic analysis of 18S rRNA gene sequences. Appl Environ Microbiol 75:4736–4746CrossRefGoogle Scholar
  45. Wadowsky RM, Butler LJ, Cook MK, Verma SM, Paul MA, Fields BS, Keleti G, Sykora JL, Yee RB (1988) Growth-supporting activity for Legionella pneumophila in tap water cultures and implication of hartmannellid amoebae as growth factors. Appl Environ Microbiol 54:2677–2682Google Scholar
  46. Walochnik J, Scheikl U, Haller-Schober EM (2014) Twenty years of Acanthamoeba diagnostics in Austria. J Eukaryot Microbiol 62:3–11CrossRefGoogle Scholar
  47. Wang H, Edwards M, Falkinham J, Pruden A (2012) Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl Environ Microbiol 78:6285–6294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Patrick L. Scheid
    • 1
    • 2
  • Thiên-Trí Lâm
    • 3
  • Ulrich Sinsch
    • 2
  • Carsten Balczun
    • 1
    Email author
  1. 1.Laboratory of Medical Parasitology, Department XXI (Med. Microbiology)Central Military Hospital KoblenzKoblenzGermany
  2. 2.Institute of Integrated Sciences; Department of BiologyUniversity of Koblenz-LandauKoblenzGermany
  3. 3.Institute for Hygiene and MicrobiologyUniversity of WuerzburgWuerzburgGermany

Personalised recommendations