Skip to main content

Advertisement

Log in

The identification of free-living environmental isolates of amoebae from Bulgaria

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

A survey was carried out in Bulgaria to determine the presence of free-living amoebae (FLA) from environmental sources. In 171 (61.1%) of 280 samples, isolates of Acanthamoeba with group II or III morphology, as well as Hartmannella spp. were recovered. Five isolates named “6” (artificial lake), Ep (lake), G2 (soil), R4* (river) and PK (spring water)—all exhibiting a highly efficient proliferation in axenic cultures—were subsequently cloned and subjected to molecular analyses for identification and genotyping In accordance with morphological findings, PCR-based analyses identified four isolates (6, Ep, G2, R4*) belonging to the genus Acanthamoeba. Confirmation of these findings was obtained by phylogenetic analysis using partial sequencing of the 18S rDNA (ASA.S1) Acanthamoeba-gene. Comparison of these sequences with corresponding regions from other Acanthamoeba strains available from GenBank sorted all four isolates into the sequence type group T4 that contains most of the pathogenic Acanthamoeba strains already identified. The fifth isolate (PK) exhibited morphological characteristics matching those of Hartmannella, and scored negative in the Naegleria fowleri and Acanthamoeba PCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitken D, Hay J, Kinnear FB, Kirkness, CM, Lee WR, Seal DV (1996) Amebic keratitis in a wearer of disposable contact lenses due to a mixed Vahlkampfia and Hartmannella infection. Ophthalmology 103:485–494

    CAS  PubMed  Google Scholar 

  • Booton GC, Kelly DJ, Chu Y-W, Seal DV, Houang E, Lam DSM, Byers TJ, Fuerst PA (2002) 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. J Clin Microbiol 40:1621–1625

    Article  CAS  PubMed  Google Scholar 

  • Cerva L (1980) Laboratory diagnosis of primary amoebic mining-encephalitis and methods for the detection of Limax amoebae in the environment. Folia Parasitol 97:1–9

    Google Scholar 

  • Clayton A, Wiley A (1987) Acanthamoeba meningoencephalitis in a patient with AIDS. J Infect Dis 155:130–133

    Google Scholar 

  • De Jonckheere JF (1977) Use of an axenic medium for differentiation between pathogenic and nonpathogenic Naegleria fowleri isolates. Appl Environm Microbiol 33:751–757

    Google Scholar 

  • De Jonckheere JF (1979a) Studies on pathogenic free-living amoebae in swimming pools. Bull Inst Pasteur 77:385–392

    Google Scholar 

  • De Jonckheere JF (1979b) Pathogenic free-living amoebae in swimming pools: a survey in Belgium. Ann Microbiol (Paris) 130B:205–212

    Google Scholar 

  • De Jonckheere JF (1991) Ecology of Acanthamoeba. Rev Infect Dis 13:[Suppl 5]:S385–7

  • De Jonckheere JF, Michel R (1988) Species identification and virulence of Acanthamoeba strains from human nasal mucosa. Parasitol Res 74:314–316

    PubMed  Google Scholar 

  • Fields BS, Nerad TA, Sawer TK, King CH, Barberee JM, Martin WT, Morrill WE, Sanden GN (1990) Characterization of an axenic strain of Hartmannella vermiformis obtained from investigation of nosocomial legionellosis. J Protozool 37:581–583

    CAS  PubMed  Google Scholar 

  • Friedland LR, Raphael SA, Deutsch ES, Johal J, Martyn LJ, Visvesvara GS, Lischner HW (1992) Disseminated Acanthamoeba infection in a child with symptomatic human immunodeficiency virus infection. Pediatr Infect Dis J 11:404–407

    CAS  PubMed  Google Scholar 

  • Gonzalez MM, Gould E, Martinez AJ, Visvesvara GS, Cleary TJ, Hensley GT (1986) Acquired immunodeficiency syndrome associated with Acanthamoeba infection and other opportunistic organisms. Arch Pathol Lab Med 110:749–751

    CAS  PubMed  Google Scholar 

  • Gregorio CD, Rivasi F, Mongiardo N, Rienzo BD, Wallace S, Visvesvara GS (1992) Acanthamoeba meningoencephalitis in a patient with acquired immunodeficiency syndrome. Arch Pathol Lab Med 116:1363–1365

    PubMed  Google Scholar 

  • Herbst R, Ott C, Jacobs T, Marti T, Marciano-Cabral F, Leippe M (2002) Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J Biol Chem 277:22353–22360

    Article  CAS  PubMed  Google Scholar 

  • Howe DK, Vodkin MH, Novak RJ, Visvesvara G, McLaughlin GL (1997) Identification of two genetic markers that distinguish pathogenic and nonpathogenic strains of Acanthamoeba spp. Parasitol Res 83:345–348

    Google Scholar 

  • Inoue T, Asari S, Tahara K, Hayashi K, Kiritoshi A, Shimomura Y (1998) Acanthamoeba keratitis with symbiosis of Hartmannella ameba. Am J Ophthalmol 125:721–723

    Article  CAS  PubMed  Google Scholar 

  • Janitschke K, Werner H, Muller G (1980) Examination on the occurrence of free-living amoebae with possible pathogenic straits in swimming pools. Zentralbl Bakteriol I. Abt Orig B 170:108–122

    CAS  Google Scholar 

  • Johan DT, De Jonckheere JF (1985) Isolation of Naegleria australiensis from an Oklahoma lake. J Protozool 32:571–575

    PubMed  Google Scholar 

  • Jones DB, Visvesvara GS, Robinson NR (1975) Acanthamoebae polyphaga keratitis and Acanthamoeba uveitis associated with fatal meningoencephalitis. Trans Ophthalmol Soc U K 1075:221–232

    Google Scholar 

  • Kadlec K (1981) Different virulence of Naegleria fowleri strains isolated from a swimming pool. Folia Parasitol 28:97–103

    CAS  PubMed  Google Scholar 

  • Kadlek V (1978) The occurrence of amphizoic amebae in domestic animals. J Protozool 25:235–237

    PubMed  Google Scholar 

  • Kennedy S, Devine M, Hurloy C, Ooi YS, Collum LM (1995) Corneal infection associated with Hartmannella vermiformis in contact lens wearer. Lancet 346:637–638

    Article  CAS  Google Scholar 

  • Kilvington S, Beeching J (1995) Development of a PCR for identification of Naegleria fowleri from the environment. Appl Environ Microbiol 61:3764–3767

    CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    CAS  PubMed  Google Scholar 

  • Kurdova-Mintcheva R (1979) Study of Limax amoebae as potential agents of human diseases (in Russian). PhD thesis, Moscow

  • Kurdova-Mintcheva R (1984) Possible sources of exogenic amoebiasis in Bulgaria (in Bulgarian). Epidem Microbiol Infect Dis 1:62–69

    Google Scholar 

  • Kurdova-Mintcheva R, Petrov P, Bradvarova I, Vinarova M, Tzvetanov I (1979) Investigations of free-living amebae group limax in tissue culture. Problems of infections and parasitic diseases. Med Fiskult 8:100–105

    Google Scholar 

  • Ledee DR, Hay J, Byers TJ, Seal DV, Kirkness CM (1996) Acanthamoeba griffini: molecular characterization of a new corneal epithelial and tear samples in the diagnosis of Acanthamoeba keratitis. Invest Ophthalmol Vis Sci 39:1261–1265

    Google Scholar 

  • Ledee DR, Seal DV, Byers TJ (1998) Confirmatory evidence from 18S r RNA gene analysis for in vivo development of propamidine resistance in a temporal series of Acanthamoeba ocular isolates from a patient. Antimicrob Agents Chemother 42:2144–2145

    CAS  PubMed  Google Scholar 

  • Ma P, Visvesvara GS, Martinez AJ, Frederick HT, Daggett PM, Sawyer TK (1990) Naegleria and Acanthamoeba infection. Rev Infect Dis 12:490–513

    CAS  PubMed  Google Scholar 

  • Martinez AJ (1985) Free-living amebas: natural history, prevention, diagnosis, pathology and treatment of disease. CRC Press, Boca Raton

  • Mathers WD, Nelson SE, Lane JL, Wilson ME, Allen RC, Folberg R (2000) Confirming of confocal microscopy diagnosis of Acanthamoeba keratitis using polymerase chain reaction analysis. Arch Ophthalmol 118:178–183

    CAS  PubMed  Google Scholar 

  • McLaughlin GL, Vodkin MN, Huizinga HW (1991) Amplification of repetitive DNA for the specific detection of Naegleria fowleri. J Clin Microbiol 29:227–230

    CAS  PubMed  Google Scholar 

  • Michel R, Röhl R, Schneider H (1982) Isolation of free-living amoebae from nasal mucosa of healthy individuals. Zentralbl Bakteriol Hyg 176:155–159

    CAS  Google Scholar 

  • Page FC (1988) A new key to freshwater and soil gymnamoebae with instructions for culture. Freshwater Biological Association, Ambleside

  • Pussard M, Pons R (1977) Morpholofie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 13:557–598

    Google Scholar 

  • Rivera F, Cerva L, Martinez J, Keleti G, Lares F, Ramirez E, Bonilla P, Graner SR, Saha AK, Glew RH (1990) Naegleria lovaniensis tarasca new subspecies, and the purepecha strain, a morphological variant of N. lovaniensis, isolated from natural thermal waters in Mexico. J Protozool 37:301–310

    CAS  PubMed  Google Scholar 

  • Rodriguez-Zaragoza S, Magana-Becerrs A (1997) Prevalence of pathogenic Acanthamoeba (protozoa: Amoebidae) in the atmosphere of the city of San Luis Potosi, Mexico. Toxicol Ind Health 13:519–526

    CAS  PubMed  Google Scholar 

  • Schroeder JM, Booton GC, Hay J, Niszl IA, Seal DV, Markus MB, Fuerst PA, Byers TJ (2001) Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoeba from humans with keratitis and from sewage sludge. J Clin Microbiol 39:1903–1911

    Article  CAS  PubMed  Google Scholar 

  • Sepetliev D (1972) Principles of medical statistics (in Bulgarian). Med Fizkult

  • Slater C, Sickel JZ, Visvesvara GS, Pabico RC, Gaspari AA (1994) Brief report: successful treatment of disseminated Acanthamoeba infection in an immunocompromised patient. N Engl J Med 331:85–87

    Article  CAS  PubMed  Google Scholar 

  • Smirnov AV, Michel R (1999) New data on the cyst structure of Hartmannella vermiformis Page, 1967 (Lobosea, Gymnamoebia). Protistology 1:82–85

    Google Scholar 

  • Stevens AR, DeJonckheere J, Willaert E (1980) Naegleria lovaniensis new species: isolation and identification of six thermophilic strains of a new species found in association with Naegleria fowleri. Int J Parasitol 10:51–64

    CAS  PubMed  Google Scholar 

  • Stothard DR, Shroeder-Diedrich JM, Awward MH, Gast RJ, Ledee DR, Rodriguez-Zaragoza S, Dean CL, Fuerst PA, Byers TJ (1998) The evolutionary history of eight new 18S rRNA gene sequence types. J Eukaryot Microbiol 45:45–54

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tsvetkova N, Kurdova R (1998) Study of pathogenic features of Acanthamoeba isolated from the environment in Bulgaria in cell culture. Exp Pathol Parasitol 1:36–45

    Google Scholar 

  • Visvesvara GS (1991) Classification of Acanthamoeba. Rev Infect Dis 13:369–372

    Google Scholar 

  • Visvesvara GS, Stehr-Green JK (1990): Epidemiology of free-living ameba infections. J Protozool 37:25–33

    Google Scholar 

  • Walochnik J, Haller-Schober EM, Kolli H, Picher O, Obwaller A, Aspöck H (2000a) Discrimination between clinically relevant and nonrelevant Acanthamoeba strains isolated from contact lens-wearing keratitis patients in Austria. J Clin Microbiol 38:3932–3936

    CAS  PubMed  Google Scholar 

  • Walochnik J, Obwaller A, Aspöck H (2000b) Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Appl Environ Microbiol 66:4408–4413

    Article  CAS  PubMed  Google Scholar 

  • Walochnik J, Obwaller A, Aspöck H (2001) Immunological inter-strain cross-reactivity correlated to 18S rDNA sequence types in Acanthamoeba spp. Int J Parasitol 31:163–167

    Article  CAS  PubMed  Google Scholar 

  • Walochnik J, Michel R, Aspöck H (2002) Discrepancy between morphological and molecular biological characters in a strain of Hartmannella vermiformis Page, 1967 (Lobosea, Gymnamoebia). Protistology 2:185–188

    Google Scholar 

  • Walochnik J, Michel R, Aspöck H (2003) New insights into amoebozoan phylogeny. 10th International Meeting on the Biology and Pathogenicity of Free-Living Amoebae Proceedings (in press)

  • Willaert E, Stevens AR, Tyndall RL (1978) Acanthamoeba royreba sp. n. from a human tumor cell culture. J Protozool 25:1–14

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (SCOPES No. 7IP062584), the Federal Office For Civil Protection and by the “Gesellschaft zur Ober Gerwern”, Berne. We would like to thank Prof. Andrew Hemphill from the Institute of Parasitology, University of Berne, Berne, Switzerland for his help in microscopy of the amoebae and Dr. Rolf Michel from the Central Institute of the Federal Armed Forces Medical Services, Koblenz, Germany for providing the strains 72/2, Pb40, De610 and Rhodos. We are indebted to Dr. Nadia Schürch and Dr. Martin Schütz from the Spiez Laboratory for their valuable support and logistic contribution to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Tsvetkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsvetkova, N., Schild, M., Panaiotov, S. et al. The identification of free-living environmental isolates of amoebae from Bulgaria. Parasitol Res 92, 405–413 (2004). https://doi.org/10.1007/s00436-003-1052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-003-1052-x

Keywords

Navigation