Skip to main content
Log in

Abomasal nematode species differ in their in vitro response to exsheathment triggers

  • Helminthology - Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

A crucial step in the infection process of grazing ruminants by gastro-intestinal nematodes is the exsheathment of the infective third-stage larva following ingestion. Recently, heat shock was shown to play an important role in the carbon dioxide (CO2)–dependent exsheathment response in Haemonchus contortus. The current in vitro study set out to evaluate the role of heat shock in other abomasal species. In rumen fluid, all species tested exsheathed rapidly and efficiently in response to heat shock and CO2. This response was significantly higher compared to slow temperature changes, supporting the hypothesis that heat shock plays an important role in vivo. However, in artificial buffer, the effect of heat shock was species-dependent. For H. contortus and Ostertagia leptospicularis, the response in artificial buffer was similar to rumen fluid. In contrast, Ostertagia ostertagi and Teladorsagia circumcincta exsheathment was significantly lower and/or slower in artificial buffer, and there was no benefit of heat shock. For these two species, it appears that there are co-factors in the rumen fluid, in addition to heat shock and CO2, contributing to exsheathment. Overall, the data indicate that there are significant differences between abomasal species in their response to exsheathment triggers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Bekelaar K, Waghorn T, Tavendale M, McKenzie C, Leathwick D (2018) Heat shock, but not temperature, is a biological trigger for the exsheathment of third stage larvae of Haemonchus contortus. Parasitol Res 117:2395–2402. https://doi.org/10.1007/s00436-018-5927-2

    Article  PubMed  Google Scholar 

  • Berbigier P, Gruner L, Mambrini M, Sophie SA (1990) Faecal water content and egg survival of goat gastro-intestinal strongyles under dry tropical conditions in Guadeloupe. Parasitol Res 76:379–385

    Article  CAS  PubMed  Google Scholar 

  • Bisset SA, Knight JS, Bouchet CLG (2014) A multiplex PCR-based method to identify strongylid parasite larvae recovered from ovine faecal cultures and/or pasture samples. Vet Parasitol 200:117–127. https://doi.org/10.1016/j.vetpar.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  • Borgsteede FH (1981) Experimental cross-infections with gastrointestinal nematodes of sheep and cattle. Z Parasitenkd 65:1–10

    Article  CAS  PubMed  Google Scholar 

  • DeRosa AA, Chirgwin SR, Fletcher J, Williams JC, Klei TR (2005) Exsheathment of Ostertagia ostertagi infective larvae following exposure to bovine rumen contents derived from low and high roughage diets. Vet Parasitol 129:77–81. https://doi.org/10.1016/j.vetpar.2004.12.019

    Article  CAS  PubMed  Google Scholar 

  • Hendrix CM (1998) Common laboratory procedures for diagnosing parasitism. In: Diagnostic veterinary parasitology. Mosby Inc, St Louis MO, pp 239–277

    Google Scholar 

  • Hertzberg H, Huwyler U, Kohler L, Rehbein S, Wanner M (2002) Kinetics of exsheathment of infective ovine and bovine strongylid larvae in vivo and in vitro. Parasitology 125:65–70

    Article  CAS  PubMed  Google Scholar 

  • MAFF (1986) Manual of Veterinary Parasitological Techniques. Technical Bulletin 18. Her Majesty’s Stationary Office (HMSO), London, UK

  • Mavrot F, Hertzberg H, Torgerson P (2015) Effect of gastro-intestinal nematode infection on sheep performance: a systematic review and meta-analysis. Parasit Vectors 8:557. https://doi.org/10.1186/s13071-015-1164-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petronijevic T, Rogers WP (1987) Undissociated bases as the stimulus for the development of early parasitic stages of nematodes. Int J Parasitol 17:911–915

    Article  CAS  PubMed  Google Scholar 

  • Petronijevic T, Rogers WP, Sommerville RI (1985) Carbonic acid as the host signal for the development of parasitic stages of nematodes. Int J Parasitol 15:661–667

    Article  CAS  PubMed  Google Scholar 

  • Petronijevic T, Rogers WP, Sommerville RI (1986) Organic and inorganic acids as the stimulus for exsheathment of infective juveniles of nematodes. Int J Parasitol 16:163–168

    Article  CAS  PubMed  Google Scholar 

  • Rogers WP (1960) The physiology of infective processes of nematode parasites; the stimulus from the animal host. Proc R Soc Lond B Biol Sci 152:367–386

    Article  CAS  PubMed  Google Scholar 

  • Rogers WP, Sommerville RI (1960) The physiology of the second ecdysis of parasitic nematodes. Parasitology 50:329–348

    Article  CAS  PubMed  Google Scholar 

  • Saleem F, Bouatra S, Guo AC, Psychogios N, Mandal R, Dunn SM, Ametaj BN, Wishart DS (2013) The bovine ruminal fluid metabolome. Metabolomics 9:360–378. https://doi.org/10.1007/s11306-012-0458-9

    Article  CAS  Google Scholar 

  • Silverman PH, Podger KR (1964) In vitro exsheathment of some nematode infective larvae. Exp Parasitol 15:314–324

    Article  CAS  PubMed  Google Scholar 

  • Sommerville RI (1957) The exsheathing mechanism of nematode infective larvae. Exp Parasitol 6:18–30

    Article  CAS  PubMed  Google Scholar 

  • Sykes AR, Coop RL (2001) Interactions between nutrition and gastrointestinal parasitism in sheep. N Z Vet J 49:222–226. https://doi.org/10.1080/00480169.2001.36236

    Article  CAS  PubMed  Google Scholar 

  • Taylor A, Whitlock JH (1960) The exsheathing stimulus for infective larvae of Haemonchus contortus. Cornell Vet 50:339–344

    CAS  PubMed  Google Scholar 

  • VSN International (2016) GenStat for Windows 18th Edition vol 18th Edition. VSN International, Hemel Hempstead, UK

Download references

Acknowledgements

We thank Peter Janssen, Stefan Muetzel and Alec Mackay for their valuable input on this project.

Funding

This project was supported by a research grant from the Ministry of Business, Innovation and Employment’s Science and Innovation Group (MBIE), New Zealand (contract C10X1506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiliana Bekelaar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Georg von Samson-Himmelstjerna

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekelaar, K., Waghorn, T., Tavendale, M. et al. Abomasal nematode species differ in their in vitro response to exsheathment triggers. Parasitol Res 118, 707–710 (2019). https://doi.org/10.1007/s00436-018-6183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-6183-1

Keywords

Navigation