Skip to main content

Advertisement

Log in

A Leishmania-specific gene upregulated at the amastigote stage is crucial for parasite survival

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The morphological and biochemical alterations between the two life stages of Leishmania are governed by stage-regulated expression of several genes. Amastigote-specific genes are believed to have a role in the survival and replication of the parasite in the hostile environment of the mammalian host. Previously, we have reported the upregulated expression of A1 gene (LdA1) at the amastigote stage at RNA level. In the present study, we have further characterized LdA1, in order to understand its role in Leishmania. Sequence homology search revealed that LdA1 is unique to the Leishmania genus. Sequence- and structure-level functional annotations predicted the involvement of LdA1 in a range of biological processes critical for survival of the parasites. Western blot confirmed the upregulated expression of LdA1 at the protein level at the amastigote stage. Overexpression of LdA1 in Leishmania did not affect its growth, phenotype, or infectivity. Attempts to generate null mutants of LdA1 by homologous recombination were not successful. Repeated inability to create null mutants of LdA1 was suggestive of gene essentiality. Mutant parasites with a single allele deletion of LdA1 (LdA1+/−) showed reduction in motility, size, and growth rate at both the life stages in vitro, which was restored following gene add-back by episomal expression of LdA1 in mutant parasites. Although LdA1+/− parasites were able to infect macrophages ex vivo, their capacity to survive inside macrophages was reduced significantly (P < 0.01) beyond 72 h of infection. In conclusion, LdA1 is a Leishmania-specific gene having upregulated expression at the amastigote stage and is important for survival of Leishmania parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avishek K, Kaushal H, Gannavaram S, Dey R, Selvapandiyan A, Ramesh V, Negi NS, Dubey US, Nakhasi HL, Salotra P (2016) Gene deleted live attenuated Leishmania vaccine candidates against visceral leishmaniasis elicit pro-inflammatory cytokines response in human PBMCs. Sci Rep 14:33059

    Article  CAS  Google Scholar 

  • Bellatin JA, Murray AS, Zhao M, McMaster WR (2002) Leishmania mexicana: identification of genes that are preferentially expressed in amastigotes. Exp Parasitol 100:44–53

    Article  CAS  PubMed  Google Scholar 

  • Boitz JM, Strasser R, Hartman CU, Jardim A, Ullman B (2012) Adenine aminohydrolase from Leishmania donovani unique enzyme in parasite purine metabolism. J Biol Chem 287:7626–7639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brittingham A, Morrison CJ, McMaster WR, McGwire BS, Chang KP, Mosser DM (1995) Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. J Immunol 155:3102–3111

    PubMed  CAS  Google Scholar 

  • Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41:349–357

    Article  Google Scholar 

  • Charest H, Matlashewski G (1994) Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage-specific gene. Mol Cell Biol 14:2975–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of non bonded atomic interactions. Protein Sci Publ Protein Soc 2:1511–1519

    Article  CAS  Google Scholar 

  • Cozzetto D, Minneci F, Currant H, Jones DT (2016) FFPred 3: feature-based function prediction for all Gene Ontology domains. Sci Rep 6:31865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft S, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debrabant A, Ghedin E, Dwyer DM (2000) Dissection of the functional domains of the Leishmania surface membrane 3′-nucleotidase/nuclease, a unique member of the class I nuclease family. J Biol Chem 275:16366–16372

    Article  CAS  PubMed  Google Scholar 

  • Debrabant A, Joshi MB, Pimenta PF, Dwyer DM (2004) Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. Int J Parasitol 34:205–217

    Article  PubMed  Google Scholar 

  • Dey R, Meneses C, Salotra P, Kamhawi S, Nakhasi HL, Duncan R (2010) Characterization of a Leishmania stage-specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulence. Mol Microbiol 77:399–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flinn HM, Smith DF (1992) Genomic organization and expression of a differentially regulated gene family from Leishmania major. Nucleic Acids Res 20:755–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannavaram S, Connelly PS, Daniels MP, Duncan R, Salotra P, Nakhasi HL (2012) Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of β-oxidation of fatty acids and blocks cell division in the amastigote stage. Mol Microbiol 86:187–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannavaram S, Dey R, Avishek K, Selvapandiyan A, Salotra P, Nakhasi HL (2014) Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis—discovery and implications. Front Immunol 5:241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannavaram S, Singh R, Selvapandiyan A, Negi NS, Nakhasi HL, Salotra P (2004) Arbitrary-primed PCR for genomic fingerprinting and identification of differentially regulated genes in Indian isolates of Leishmania donovani. Exp Parasitol 106:110–118

    Article  CAS  Google Scholar 

  • Glaser TA, Moody SF, Handman E, Bacic A, Spithill TW (1991) Anantigenically distinct lipophosphoglycan on amastigotes of Leishmania major. Mol Biochem Parasitol 45:337–344

    Article  CAS  PubMed  Google Scholar 

  • Goyard S, Segawa H, Gordon J, Showalter M, Duncan R, Turco SJ, Beverley SM (2003) An in vitro system for developmental and genetic studies of Leishmania donovani phosphoglycans. Mol Biochem Parasitol 130:31–42

    Article  CAS  PubMed  Google Scholar 

  • Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161

    Article  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, HJC B, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Idicula-Thomas S, Balaji PV (2005) Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci 14:582–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi MB, Rogers ME, Shakarian AM, Yamage M, Al-Harthi SA, Bates PA, Dwyer DM (2005) Molecular characterization, expression, and in vivo analysis of LmexCht1: the chitinase of the human pathogen, Leishmania mexicana. J Biol Chem 280:3847–3861

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  PubMed  Google Scholar 

  • Maharana J, Patra MC, De BC, Sahoo BR, Behera BK, De S, Pradhan SK (2014) Structural insights into the MDP binding and CARD-CARD interaction in zebrafish (Danio rerio) NOD2: a molecular dynamics approach. J Mol Recognit 27:260–275

    Article  CAS  PubMed  Google Scholar 

  • Manhas R, Anand S, Tripathi P, Madhubala R (2014) Deletion of vitamin C biosynthesis enzyme, arabino-1,4-lactone oxidase in Leishmania donovani results in increased pro-inflammatory responses from host immune cells. Mol Microbiol 91:1227–1239

    Article  CAS  PubMed  Google Scholar 

  • McConville MJ, Handman E (2007) The molecular basis of Leishmania pathogenesis. Int J Parasitol 37:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • McNicoll F, Drummelsmith J, Muller M, Madore E, Boilard N, Ouellette M, Papadopoulou B (2006) A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 6:3567–3581

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Sen P, Majumder HK, Roy S (1998) Reduced expression of lipophosphoglycan (LPG) and kinetoplastid membrane protein (KMP)-11 in Leishmania donovani promastigotes in axenic culture. J Parasitol 84:644–647

    Article  CAS  PubMed  Google Scholar 

  • Mundodi V, Kucknoor AS, Gedamu L (2005) Role of Leishmania (Leishmania) chagasi amastigote cysteine protease in intracellular parasite survival: studies by gene disruption and antisense mRNA inhibition. BMC Mol Biol 6:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nugent PG, Karsani SA, Wait R, Tempero J, Smith DF (2004) Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol 136:51–62

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou B, Roy G, Breton M, Kündig C, Dumas C, Fillion I, Singh AK, Olivier M, Ouellette M (2002) Reduced infectivity of a Leishmania donovani biopterin transporter genetic mutant and its use as an attenuated strain for vaccination. Infect Immun 70:62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulou B, Roy G, Dey S, Rosen BP, Olivier M, Ouellette MM (1996) Gene disruption of the P-glycoprotein related gene pgpa of Leishmania tarentolae. Biochem Biophys Res Commun 224:772–778

    Article  CAS  PubMed  Google Scholar 

  • Ramesh V, Singh R, Avishek K, Verma A, Deep DK, Verma S, Salotra P (2015) Decline in clinical efficacy of oral miltefosine in treatment of post Kala-azar dermal leishmaniasis (PKDL) in India. PLoS Negl Trop Dis 9:e0004093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368

    Article  CAS  PubMed  Google Scholar 

  • Sardar AH, Jardim A, Ghosh AK, Mandal A, Das S, Saini S, Abhishek K, Singh R, Verma S, Kumar A, Das P (2016) Genetic manipulation of Leishmania donovani to explore the involvement of argininosuccinate synthase in oxidative stress management. PLoS Negl Trop Dis 10:e0004308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvapandiyan A, Dey R, Gannavaram S, Solanki S, Salotra P, Nakhasi HL (2014) Generation of growth arrested Leishmania amastigotes: a tool to develop live attenuated vaccine candidates against visceral leishmaniasis. Vaccine 32:3895–3901

    Article  CAS  PubMed  Google Scholar 

  • Selvapandiyan A, Debrabant A, Duncan R, Muller J, Salotra P, Sreenivas G, Salisbury JL, Nakhasi HL (2004) Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in Leishmania. J Biol Chem 279:25703–25710

    Article  CAS  PubMed  Google Scholar 

  • Selvapandiyan A, Duncan R, Debrabant A, Bertholet S, Sreenivas G, Negi NS, Salotra P, Nakhasi HL (2001) Expression of a mutant form of Leishmania donovani centrin reduces the growth of the parasite. J Biol Chem 276:43253–43261

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Gurumurthy S, Duncan R, Nakhasi HL, Salotra P (2010) Comparative in vivo expression of amastigote up regulated Leishmania genes in three different forms of Leishmaniasis. Parasitol Int 59:262–264

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Sharma P, Selvapandiyan A, Salotra P (2016) Leishmania donovani-specific Ub-related modifier-1: an early endosome-associated ubiquitin-like conjugation in Leishmania donovani. Mol Microbiol 99:597–610

    Article  CAS  PubMed  Google Scholar 

  • Silvestre R, Cordeiro-Da-Silva A, Santarém N, Vergnes B, Sereno D, Ouaissi A (2007) SIR2-deficient Leishmania infantum induces a defined IFN-γ/IL-10 pattern that correlates with protection. J Immunol 179:3161–3170

    Article  CAS  PubMed  Google Scholar 

  • Singh OP, Hasker E, Sacks D, Boelaert M, Sundar S (2014) Asymptomatic Leishmania infection: a new challenge for Leishmania control. Clin Infect Dis 58:1424–1429

    Article  PubMed  PubMed Central  Google Scholar 

  • Späth GF, Garraway LA, Turco SJ, Beverley SM (2003) The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts. Proc Natl Acad Sci U S A 100:9536–9541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srividya G, Duncan R, Sharma P, Raju BV, Nakhasi HL, Salotra P (2007) Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays. Parasitol 134:1527–1539

    Article  CAS  Google Scholar 

  • Sundar S (2001) Drug resistance in Indian visceral leishmaniasis. Tropical Med Int Health 6:849–854

    Article  CAS  Google Scholar 

  • Taheri T, Salmanian AH, Gholami E, Doustdari F, Zahedifard F, Rafati S (2010) Leishmania major: disruption of signal peptidase types I and its consequences on survival, growth and infectivity. Exp Parasitol 126:135–145

    Article  CAS  PubMed  Google Scholar 

  • Uliana SR, Goyal N, Freymüller E, Smith DF (1999) Leishmania: overexpression and comparative structural analysis of the stage-regulated meta 1 gene. Exp Parasitol 92:183–191

    Article  CAS  PubMed  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410

    Article  Google Scholar 

  • Wilson ZN, Gilroy CA, Boitz JM, Ullman B, Yates PA (2012) Genetic dissection of pyrimidine biosynthesis and salvage in Leishmania donovani. J Biol Chem 287:12759–12770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, El Fakhry Y, Sereno D, Tamar S, Papadopoulou B (2000) A new developmentally regulated gene family in Leishmania amastigotes encoding a homolog of amastin surface proteins. Mol Biochem Parasitol 110:345–357

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:174–181

    Article  CAS  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WW, Charest H, Ghedin E, Matlashewski G (1996) Identification and overexpression of the A2 amastigote-specific protein in Leishmania donovani. Mol Biochem Parasitol 78:79–90

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W.W., and Matlashewski, G. (1997) Loss of virulencein Leishmania donovani deficient in an amastigote-specificprotein, A2. Proc Natl Acad Sci USA 94: 8807-8811

    Article  CAS  Google Scholar 

  • Zhang WW, Matlashewski G (2004) In vivo selection for Leishmania donovani mini exon genes that increase virulence in Leishmania major. Mol Microbiol 54:1051–1062

    Article  CAS  PubMed  Google Scholar 

  • Zhang WW, Matlashewski G (2001) Characterization of the A2–A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol Microbiol 39:935–948

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2014) Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins: Structure, Function, and Bioinformatics 82:175–187

    Article  CAS  Google Scholar 

  • Zufferey R, Mamoun BC (2006) Leishmania major expresses a single dihydroxy acetone phosphateacyl transferase localized in the glycosome, important for rapid growth and survival at high cell density and essential for virulence. J Biol Chem 281:7952–7959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Biomedical Informatics Centre, National Institute of Pathology, for providing the technical assistance with in silico analysis.

Funding

This work was funded by grants from the Department of Biotechnology (DBT), Government of India (Grant no. BT/PR441/MED/15/7/2011). KA1 and KA2 are grateful to the Council for Scientific and Industrial Research (CSIR) and the Department of Science and Technology (DST), India, for fellowships. PS is grateful to DST for JC Bose Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Kumar Avishek (KA1), AS, SG, HLN, and PS conceived of and designed the experiments. KA1 and Kavita Ahuja (KA2) performed the experiments. PS and AS contributed to the reagents/materials/analysis tools. DP, KA1, and PS performed the in silico analysis, and DP contributed in its write up. KA1 and PS wrote the paper. AS, HLN, and SG critically revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Poonam Salotra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Supplementary Fig. 1

Phylogenetic analysis showing evolutionary patterns of putative LdA1 protein in Leishmania. Phylogenetic tree was constructed using Ensemblprotists gene tree database showing the different clusters of LdA1. (PNG 78 kb)

High resolution image (TIFF 1020 kb)

Supplementary Fig. 2

Multiple sequence alignment for LdA1 from Leishmania species. (A) Sequence alignment was developed for LdA1 sequence from different species of Leishmania in Clustal W-alignment format. Amino acids are listed in the standard one-letter code, and residues identical to Leishmania LdA1 are indicated by stars. (B) The percentage sequence identity of LdA1 between different species of Leishmania. (PNG 3052 kb)

High resolution image (TIF 4154 kb)

Movie 2

Reduced size, motility and number of LdA1+/− mutant parasites after replacement of LdA1 with neor (movie 1) and hygr (movie 2) as compared to the wild type parasites (movie 3) in log phage culture. Defect in growth and morphology was rescued after episomal expression of LdA1 in LdA1+/− mutant parasites (Movie 4). (MP4 4737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avishek, K., Ahuja, K., Pradhan, D. et al. A Leishmania-specific gene upregulated at the amastigote stage is crucial for parasite survival. Parasitol Res 117, 3215–3228 (2018). https://doi.org/10.1007/s00436-018-6020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-6020-6

Keywords

Navigation