Skip to main content
Log in

The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Pathogenic bacteria share their natural habitat with many other organisms such as animals, plants, insects, parasites and amoeba. Interactions between these organisms influence not only the life style of the host organisms, but also modulate bacterial physiology. Adaptation can include biofilm formation, capsule formation, and production of virulence factors. Although biofilm formation is a dominant mode of bacterial life in environmental settings, its role in host-pathogen interactions is not extensively studied. In this work, we investigated the role of molecular pathways involved in rdar biofilm formation in the interaction of Salmonella typhimurium with the Acanthamoeba castellanii genotype T4. Genes coding for the rdar biofilm activator CsgD, the cellulose synthase BcsA, and curli fimbriae subunits CsgBA were deleted from the genome of S. typhimurium. Assessment of interactions of wild-type and mutant strains of S. typhimurium with A. castellanii revealed that deletion of the cellulose synthase BcsA promoted association and uptake by A. castellanii, whereas the interactions with csgD and csgBA mutants were not changed. Our findings suggest that cellulose synthase BcsA inhibits the capabilities of S. typhimurium to associate with and invade into A. castellanii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad I et al (2011) Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium. PLoS One 6(12):2

    Google Scholar 

  • Ahmad I et al (2016) BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Microb Cell Factories 15(1):016–0576

    Article  CAS  Google Scholar 

  • Amann R, Springer N, Schönhuber W, Ludwig W, Schmid EN, Müller KD, Michel R (1997) Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63(1):115–121

    PubMed  PubMed Central  CAS  Google Scholar 

  • Barker J, Brown MR (1994) Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiol (Reading, England) 140(Pt 6):1253–1259. https://doi.org/10.1099/00221287-140-6-1253

    Article  CAS  Google Scholar 

  • Barnhart DM, Su S, Baccaro BE, Banta LM, Farrand SK (2013) CelR, an ortholog of the diguanylate cyclase PleD of Caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 79(23):7188–7202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandl MT, Carter MQ, Parker CT, Chapman MR, Huynh S, Zhou Y (2011) Salmonella biofilm formation on Aspergillus niger involves cellulose—chitin interactions. PLoS One 6(10):e25553. https://doi.org/10.1371/journal.pone.0025553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cirillo JD, Cirillo SL, Yan L, Bermudez LE, Falkow S, Tompkins LS (1999) Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila. Infect Immun 67(9):4427–4434

    PubMed  PubMed Central  CAS  Google Scholar 

  • Crull K, Rohde M, Westphal K, Loessner H, Wolf K, Felipe-López A, Hensel M, Weiss S (2011) Biofilm formation by Salmonella enterica serovar Typhimurium colonizing solid tumours. Cell Microbiol 13(8):1223–1233. https://doi.org/10.1111/j.1462-5822.2011.01612.x

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Declerck P, Behets J, Margineanu A, van Hoef V, De Keersmaecker B, Ollevier F (2009) Replication of Legionella pneumophila in biofilms of water distribution pipes. Microbial Res 164(6):593–603. https://doi.org/10.1016/j.micres.2007.06.001

    Article  CAS  Google Scholar 

  • Douesnard-Malo F, Daigle F (2011) Increased persistence of Salmonella enterica serovar Typhi in the presence of Acanthamoeba castellanii. Appl Environ Microbiol 77(21):7640–7646. https://doi.org/10.1128/aem.00699-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng Y, Hsiao YH, Chen HL, Chu C, Tang P, Chiu CH (2009) Apoptosis-like cell death induced by Salmonella in Acanthamoeba rhysodes. Genomics 94(2):132–137. https://doi.org/10.1016/j.ygeno.2009.05.004

    Article  PubMed  CAS  Google Scholar 

  • Gaze WH, Burroughs N, Gallagher MP, Wellington EM (2003) Interactions between Salmonella typhimurium and Acanthamoeba polyphaga, and observation of a new mode of intracellular growth within contractile vacuoles. Microbial Ecol 46(3):358–369. https://doi.org/10.1007/s00248-003-1001-3

    Article  CAS  Google Scholar 

  • Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA, van Bruggen AH (2011) Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One 6(11):e27340. https://doi.org/10.1371/journal.pone.0027340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harb OS, Gao LY, Abu Kwaik Y (2000) From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ Microbiol 2(3):251–265

    Article  PubMed  CAS  Google Scholar 

  • Huws SA, Morley RJ, Jones MV, Brown MR, Smith AW (2008) Interactions of some common pathogenic bacteria with Acanthamoeba polyphaga. FEMS Microbiol Lett 282(2):258–265

    Article  PubMed  CAS  Google Scholar 

  • Jensen VB, Harty JT, Jones BD (1998) Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer’s patches. Infect Immun 66(8):3758–3766

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jones BD, Ghori N, Falkow S (1994) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med 180(1):15–23

    Article  PubMed  CAS  Google Scholar 

  • Jung SY, Matin A, Kim KS, Khan NA (2007) The capsule plays an important role in Escherichia coli K1 interactions with Acanthamoeba. Int J Parasitol 37(3–4):417–423

    Article  PubMed  CAS  Google Scholar 

  • Kader A, Simm R, Gerstel U, Morr M, Römling U (2006) Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60(3):602–616

    Article  PubMed  CAS  Google Scholar 

  • Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30(4):564–595. https://doi.org/10.1111/j.1574-6976.2006.00023.x

    Article  PubMed  CAS  Google Scholar 

  • King CH, Shotts EB, Wooley RE, Porter KG (1988) Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl Environ Microbiol 54(12):3023–3033

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Struewing I, Vereen E, Kirby AE, Levy K, Moe C, Ashbolt N (2016) Molecular detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system. J Appl Microbiol 120(2):509–521

    Article  PubMed  CAS  Google Scholar 

  • Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16(2):273–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez AJ, Visvesvara GS (1997) Free living, amphizoic and opportunistic amebas. Brain Path 7(1):583–598

    Article  CAS  Google Scholar 

  • Monteiro C, Saxena I, Wang X, Kader A, Bokranz W, Simm R, Nobles D, Chromek M, Brauner A, Brown RM Jr, Römling U (2009) Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ Microbiol 11(5):1105–1116. https://doi.org/10.1111/j.1462-2920.2008.01840.x

    Article  PubMed  CAS  Google Scholar 

  • Recouvreux DO, Carminatti CA, Pitlovanciv AK, Rambo CR, Porto LM, Antonio RV (2008) Cellulose biosynthesis by the beta-proteobacterium, Chromobacterium violaceum. Curr Microbiol 57(5):469–476

    Article  PubMed  CAS  Google Scholar 

  • Riquelme S, Varas M, Valenzuela C, Velozo P, Chahin N, Aguilera P, Sabag A, Labra B, Álvarez SA, Chávez FP, Santiviago CA (2016) Relevant genes linked to virulence are required for Salmonella typhimurium to survive intracellularly in the social amoeba Dictyostelium discoideum. Front Microbiol 7:1305. https://doi.org/10.3389/fmicb.2016.01305

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez M, de Diego I, Mendoza MC (1998) Extraintestinal salmonellosis in a general hospital (1991 to 1996): relationships between Salmonella genomic groups and clinical presentations. J Clin Microbiol 36(11):3291–3296

    PubMed  PubMed Central  CAS  Google Scholar 

  • Romling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153(4):205–212

    Article  PubMed  Google Scholar 

  • Römling U (2005) Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62(11):1234–1246

    Article  PubMed  CAS  Google Scholar 

  • Rude R, Jackson G, Bier J, Sawyer T, Risty N (1983) Survey of fresh vegetables for nematodes, amoebae, and Salmonella. AOAC J 67(3):613–615

    Google Scholar 

  • Sesma MJM, Ramos LZ (1989) Isolation of free-living amoebas from the intestinal contents of reptiles. J Parasitol 75:322–324

    Article  PubMed  CAS  Google Scholar 

  • Shoaib HM, Muazzam AG, Mir A, Jung S-Y, Matin A (2013) Evaluation of inhibitory potential of some selective methanolic plants extracts on biological characteristics of Acanthamoeba castellanii using human corneal epithelial cells in vitro. Parasitol Res 112(3):1179–1188

    Article  PubMed  Google Scholar 

  • Simm R, Ahmad I, Rhen M, Le Guyon S, Romling U (2014) Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 9(11):1261–1282

    Article  PubMed  CAS  Google Scholar 

  • Snelling WJ, Moore JE, McKenna JP, Lecky DM, Dooley JS (2006) Bacterial-protozoa interactions; an update on the role these phenomena play towards human illness. Microbes Infect 8(2):578–587

    Article  PubMed  CAS  Google Scholar 

  • Steinert M, Birkness K, White E, Fields B, Quinn F (1998) Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl Environ Microbiol 64(6):2256–2261

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tanveer T, Hameed A, Muazzam AG, Jung S-Y, Gul A, Matin A (2013) Isolation and molecular characterization of potentially pathogenic Acanthamoeba genotypes from diverse water resources including household drinking water from Khyber Pakhtunkhwa, Pakistan. Parasitol Res 112(8):2925–2932

    Article  PubMed  Google Scholar 

  • Tezcan-Merdol D, Ljungstrom M, Winiecka-Krusnell J, Linder E, Engstrand L, Rhen M (2004) Uptake and replication of Salmonella enterica in Acanthamoeba rhysodes. Appl Environ Microbiol 70(6):3706–3714. https://doi.org/10.1128/aem.70.6.3706-3714.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thamprasert K, Khunamornpong S, Morakote N (1993) Acanthamoeba infection of peptic ulcer. Ann Trop Med Parasit 87(4):403–405

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven AB, Durham-Colleran MW, Pierson T, Boswell WT, Van Hoek ML (2010) Francisella philomiragia biofilm formation and interaction with the aquatic protist Acanthamoeba castellanii. Biol Bull 219(2):178–188. https://doi.org/10.1086/BBLv219n2p178

    Article  PubMed  Google Scholar 

  • Wang X, Rochon M, Lamprokostopoulou A, Lunsdorf H, Nimtz M, Romling U (2006) Impact of biofilm matrix components on interaction of commensal Escherichia coli with the gastrointestinal cell line HT-29. Cell Mol Life Sci 63(19–20):2352–2363

    Article  PubMed  CAS  Google Scholar 

  • Zaman V, Zaki M, Manzoor M (1999) Acanthamoeba in human faeces from Karachi. Ann Trop Med Parasit 93(2):189–191

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The work was funded by the University of Health Sciences, Lahore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

ESM 1

(DOCX 305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, M.A., Rafique, M.W., Manan, T. et al. The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4. Parasitol Res 117, 2283–2289 (2018). https://doi.org/10.1007/s00436-018-5917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5917-4

Keywords

Navigation