Skip to main content

Advertisement

Log in

Molecular docking to Toxoplasma gondii thymidylate synthase-dihydrofolate reductase and efficacy of raltitrexed in infected mice

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Toxoplasmosis is a zoonosis of worldwide distribution. Currently, two drugs, pyrimethamine and sulfadiazine, are used as a reference in the treatment of toxoplasmosis, but the resistance of Toxoplasma gondii appears as a relevant public health problem. In order to identify new drugs to toxoplasmosis treatment, we performed a molecular docking of raltitrexed to T. gondii thymidylate synthase-dihydrofolate reductase (TS-DHFR) and also evaluated its efficacy in infected mice. Initially, raltitrexed was docked on the crystallographic structures of TS-DHFR from T. gondii and Mus musculus. Then, 48 h after infection with the T. gondii RH strain, different groups of mice received an oral dose of raltitrexed (0.15, 0.75, and 1.5 mg kg−1). Two days after treatments, raltitrexed was able to prevent mortality and reduce the number of tachyzoites in the peritoneal fluid and liver imprints from infected mice. The results showed that raltitrexed has important protective activities against the T. gondii RH strain. Molecular docking still suggests that the effects against the parasite may be dependent on the inhibition of T. gondii thymidylate synthase. This study opens new perspectives for the use of raltitrexed in patients infected with T. gondii, especially when conventional treatments do not exhibit the expected efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alzahrani KJ, Matyugina ES, Khandazhinskaya AL, Kochetkov SN, Seley-Radtke KL, Koning HP (2017) Evaluation of the antiprotozoan properties of 5′-norcarbocyclic pyrimidine nucleosides. Bioorganic Med Chem Lett 27(14):3081–3086

    Article  CAS  Google Scholar 

  • Assolini JP, Concato VM, Gonçalves MD, Carloto ACM, Conchon-Costa I, Pavanelli WR, Melanda FN, Costa IN (2017) Nanomedicine advances in toxoplasmosis: diagnostic, treatment, and vaccine applications. J Parasitol Res 116(6):1603–1615

    Article  Google Scholar 

  • Borst P, Ouellette M (1995) New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol 49(1):427–460

    Article  CAS  PubMed  Google Scholar 

  • Caramelo P, Brancale T, Forno B, Lucchini A, Pollono AM, Ullio A, Gioannini P, Viano I, Tonso E (1995) Relapse of Toxoplasma encephalitis and susceptibility to pyrimethamine: lack of evidence of treatment-induced resistance. Antimicrob Agents Chemother 39(1):2371–2372

    Article  Google Scholar 

  • Cody V, Pace J, Chisum K, Rosowsky A (2006) New insights into DHFR interactions: analysis of Pneumocystis carinii and mouse DHFR complexes with NADPH and two highly potent 5-(omega-carboxy(alkyloxy) trimethoprim derivatives reveals conformational correlations with activity and novel parallel ring stacking interactions. Proteins Struct Funct Bioinf 65(4):959–969

  • Dewar S, Sienkiewicz N, Ong HB, Wall RJ, Horn D, Fairlamb AH (2016) The role of folate transport in antifolate drug action in Trypanosoma brucei. J Biol Chem 291(47):24768–24778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowiercial A, Wilk P, Rypniewski W, Rodem W, Jarmula A (2014) Crystal structure of mouse thymidylate synthase in tertiary complex with dUMP and raltitrexed reveals N-terminus architecture and two different active site conformations. Biomed Res Int 2014(ID 945803):1–7

    Article  Google Scholar 

  • Faye B, Ndiaye M, Ndiaye J, Annie A, Tine R, Colié Lo A, Ndiaye M, Sow D, De Sousa A, Gaye O (2011) Prevalence of molecular markers of Plasmodium falciparum resistance tosulfadoxine-pyrimethamine during the intermittent preventive treatment in infants coupled with the expanded program immunization in Senegal. Parasitol Res 109(1):133–138

    Article  PubMed  Google Scholar 

  • Gangjee A, Jain HD, Phan J, Guo X, Queener SF, Kisliuk RL (2010) 2, 4-Diamino-5-methyl-6-substituted arylthio-furo [2, 3-d] pyrimidines as novel classical and nonclassical antifolates as potential dual thymidylate synthase and dihydrofolate reductase inhibitors. Bioorg Med Chem 18(2):953–961

    Article  CAS  PubMed  Google Scholar 

  • Guedes IA, de Magalhaes CS, Dardenne LE (2014) Receptor-ligand molecular docking. Biophys Rev 6:75–87

    Article  CAS  PubMed  Google Scholar 

  • Gunasekara NS, Faulds D (1998) Raltitrexed: a review of its pharmacological properties and clinical efficacy in the management of advanced colorectal cancer. Drugs 55(3):423–435

    Article  CAS  PubMed  Google Scholar 

  • Hekmat-Nejad M, Rathod PK (1996) Kinetics of plasmodium falciparum thymidylate synthase: interactions with high-affinity metabolites of 5-fluoroorotate and D1694. Antimicrob Agents Chemother 40(7):1628–1632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wu W, Hong W, Sun X, Wu J (2014) Raltitrexed-based chemotherapy for advanced colorectal câncer. Clin Res Hepatol Gastroenterol 38(2):219–225

    Article  CAS  PubMed  Google Scholar 

  • Massacesi C, Santini D, Rocchi MB, La Cesa A, Marcucci F, Vincenzi B, Delprete S, Tonini G, Bonsignori M (2003) Raltitrexed-induced hepatotoxicity: multivariate analysis of predictive factors. Anti-Cancer Drugs 14(7):533–541

    Article  CAS  PubMed  Google Scholar 

  • McNicholas S, Potterton E, Wilson KS, Noble MEM (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67(4):386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard DM, Bower L, Potten CS, Jackman AL, Hickman JA (2000) The importance of p53-independent apoptosis in the intestinal toxicity induced by raltitrexed (ZD1694, Tomudex): genetic differences between BALB/c and DBA/2 mice. Clin Cancer Res 6(11):4389–4395

    CAS  PubMed  Google Scholar 

  • Reynolds MG, Roos DS (1998) A biochemical and genetic model for parasite resistance to antifolates. Toxoplasma gondii provides insights into pyrimethamine and cycloguanil resistance in Plasmodium falciparum. J Biol Chem 273:3461–3469

    Article  CAS  PubMed  Google Scholar 

  • Van Cutsem E, Cunningham D, Maroun J, Cervantes A, Glimelius B (2002) Raltitrexed: current clinical status and future directions. Ann Oncol 13(4):513–522

    Article  PubMed  Google Scholar 

  • Ward WH, Kimbell R, Jackman AL (1992) Kinetic characteristics of ICI D1694: a quinazoline antifolate which inhibits thymidylate synthase. Biochem Pharmacol 43(9):2029–2031

    Article  CAS  PubMed  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67(4):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakeri S, Farahani MS, Afsharpad M, Salehi M, Raeisi A, Djadid ND (2010) High prevalence of the 437G mutation associated with sulfadoxine resistance among Plasmodium falciparum clinical isolates from Iran, three years after the introduction of sulfadoxine-pyrimethamine. Int J Infect Dis 12(3):123–128

    Article  Google Scholar 

  • Zaware N, Sharma H, Yang J, Devambatla RK, Queener SF, Anderson KS, Gangjee A (2013) Discovery of potent and selective inhibitors of Toxoplasma gondii thymidylate synthase for opportunistic infections. ACS Med Chem Lett 4:1148–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Diretoria Executiva de Gestão da Pesquisa e Pós-Graduação (DEGPP/UNIPAR, Brazil), Fundação de Amparo a Pesquisa do Estado do Paraná (Fundação Araucária, Brazil, grant number 147/14), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), and Laboratório Nacional de Computação Científica (LNCC, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arquimedes Gasparotto Junior.

Ethics declarations

All procedures were previously approved by the Institutional Ethics Committee of Universidade Paranaense (Brazil; protocol number 25452/2014) and conducted in accordance with Guidelines for the Care and Use of Laboratory Animals as adopted and promulgated by the US National Health Institute.

Conflict of interest

The authors declare that there are no conflicts of interest in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula Reis, M., de Lima, D.A., Pauli, K.B. et al. Molecular docking to Toxoplasma gondii thymidylate synthase-dihydrofolate reductase and efficacy of raltitrexed in infected mice. Parasitol Res 117, 1465–1471 (2018). https://doi.org/10.1007/s00436-018-5835-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5835-5

Keywords

Navigation