Skip to main content

Advertisement

Log in

An overview of methods/techniques for the detection of Cryptosporidium in food samples

  • Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Cryptosporidium is one of the most important parasitic protozoa of concern within the food production industry, worldwide. This review describes the evolution and its development, and it monitors the methodology that has been used for Cryptosporidium in food material since 1984, when the first publication appeared regarding the detection of Cryptosporidium parvum in food materials. The methods that are currently being used for the detection of Cryptosporidium oocysts in food material (mainly vegetables) and all of the other available published methods are discussed in this review. Generating more consistent and reliable data should lead to a better understanding of the occurrence, transport and fate of the oocysts in food material. Improvements in monitoring and developing effective methodology, along with food security, offer more practical possibilities for both the developed and developing worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Åberg R, Sjöman M, Hemminki K, Pirnes A, Räsänen S, Kalanti A, Pohjanvirta T, Caccio SM, Pihlajasaari A, Toikkanen S, Huusko S, Rimhanen-Finne R (2015) Cryptosporidium parvum caused a large outbreak linked to frisée salad in Finland, 2012. Zoonoses Public Health 62(8):618–624. https://doi.org/10.1111/zph.12190

    Article  PubMed  Google Scholar 

  • Ahmed SA, Ali IH, Jianhua L, Fang W, Pengtao G, Fan L, Xichen Z (2014) Zoonotic Cryptosporidium parvum in diarhea patients in Changchun, China. Trends Life Sci 3:2319–4731

    Google Scholar 

  • Alagappan A, Tujula NA, Power M, Ferguson CM, Bergquist PL, Ferrari BC (2008) Development of fluorescent in situ hybridisation for Cryptosporidium detection reveals zoonotic and anthroponotic transmission of sporadic cryptosporidiosis in Sydney. J Microbiol Methods 75(3):535–539. https://doi.org/10.1016/j.mimet.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  • Aldeyarbi HM, Karanis P (2016a) Electron microscopic observation of the early stages of Cryptosporidium parvum asexual multiplication and development in in vitro axenic culture. Eur J Protistol 52:36–44. https://doi.org/10.1016/j.ejop.2015.07.002

    Article  PubMed  Google Scholar 

  • Aldeyarbi HM, Karanis P (2016b) The ultra-structural similarities between Cryptosporidium parvum and the Gregarines. J Eukaryot Microbiol 63(1):79–85. https://doi.org/10.1111/jeu.12250

    Article  PubMed  Google Scholar 

  • Aly Shalash IR, Zalat R, El-Enain G, EL-Mohandes M, EL-Faramawy M, Aly E (2016) Comparison between modified acid fast staining and antigen detection assay as diagnostic techniques for Cryptosporidium parvum. World J Med Sci 13:72–78

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amorós I, Alonso JL, Cuesta G (2010) Cryptosporidium oocysts and Giardia cysts on salad products irrigated with contaminated water. J Food Prot 73(6):1138–1140. https://doi.org/10.4315/0362-028X-73.6.1138

    Article  PubMed  Google Scholar 

  • Anguish LJ, Ghiorse WC (1997) Computer-assisted laser scanning and video microscopy for analysis of Cryptosporidium parvum oocysts in soil, sediment, and feces. Appl Environ Microbiol 63(2):724–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avazpoor M, Yousefipoor M, Dusty M, Mehdipour M, Seifipour F, Gholam Z (2015) Determination of the level of parasitic infection (Cryptosporidium and Giardia) of the vegetables marketed in Ilam city. Environ Heal Eng Manag J 2:37–40

    Google Scholar 

  • Bakheit MA, Torra D, Palomino LA, Thekisoe OMM, Mbati PA, Ongerth J, Karanis P (2008) Sensitive and specific detection of Cryptosporidium species in PCR-negative samples by loop-mediated isothermal DNA amplification and confirmation of generated LAMP products by sequencing. Vet Parasitol 158(1-2):11–22. https://doi.org/10.1016/j.vetpar.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  • Baldursson S, Karanis P (2011) Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2004-2010. Water Res 45(20):6603–6614. https://doi.org/10.1016/j.watres.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  • Barbosa JMM, Costa-de-Oliveira S, Rodrigues AG, Hanscheid T, Shapiro H, Pina-Vaz C (2008) A flow cytometric protocol for detection of Cryptosporidium spp. Cytom Part A 73:44–47

    Article  CAS  Google Scholar 

  • Baron EJ, Schenone C, Tanenbaum B (1989) Comparison of three methods for detection of Cryptosporidium oocysts in a low prevalence population. J Clin Microbiol 27(1):223–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn BG, Mazurek JM, Hlavsa M, Park J, Tillapaw M, Parrish M, Salehi E, Franks W, Koch E, Smith F, Xiao L, Arrowood M, Hill V, da Silva A, Johnston S, Jones JL (2006) Cryptosporidiosis associated with ozonated apple cider. Emerg Infect Dis 12(4):684–686. https://doi.org/10.3201/eid1204.050796

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouzid M, Hunter PR, Chalmers RM, Tyler KM (2013) Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev 26:115–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo M, Carazo M, Arias ML, Chaves C, Monge R, Chinchilla M (2004) Prevalence of Cyclospora sp., Cryptosporidium sp, Microsporidia and fecal coliform determination in fresh fruit and vegetables consumed in Costa Rica. Arch Latinoam Nutr 54:428–432

    PubMed  Google Scholar 

  • Caradonna T, Marangi M, Del Chierico F, Ferrari N, Reddel S, Bracaglia G, Normanno G, Putignani L, Giangaspero A (2017) Detection and prevalence of protozoan parasites in ready-to-eat packaged salads on sale in Italy. Food Microbiol 67:67–75. https://doi.org/10.1016/j.fm.2017.06.006

    Article  PubMed  Google Scholar 

  • Casemore DP, Jessop EG, Douce D, Jackson FB (1986) Cryptosporidium plus Campylobacter: an outbreak in a semi-rural population. J Hyg (Lond) 96(01):95–105. https://doi.org/10.1017/S0022172400062586

    Article  CAS  Google Scholar 

  • CDC (1996) Foodborne outbreak of diarrheal illness associated with Cryptosporidium parvum—Minnesota, 1995. Morb Mortal Wkly Rep 45:783–784

    Google Scholar 

  • CDC (1997) Outbreaks of Escherichia coli O157:H7 infection and cryptosporidiosis associated with drinking unpasteurized apple cider—Connecticut and New York, October 1996. Morb Mortal Wkly Rep 46:4–8

  • CDC (1998) Foodborne outbreak of cryptosporidiosis—Spokane, Washington, 1997. Morb Mortal Wkly Rep 47:565–567

    Google Scholar 

  • CDC (2011) Cryptosporidiosis outbreak at a summer camp—North Carolina, 2009. Morb Mortal Wkly Rep 60:918–922

    Google Scholar 

  • CDC (2014) Outbreak of cryptosporidiosis among responders to a rollover of a truck carrying calves—Kansas, April 2013. Morb Mortal Wkly Rep 63:1185–1188

    Google Scholar 

  • CDC (2015) Cryptosporidiosis associated with consumption of unpasteurized goat milk—Idaho, 2014. Morb Mortal Wkly Rep 64:194–195

    Google Scholar 

  • Chappell CL, Okhuysen PC, Langer-Curry R, Widmer G, Akiyoshi DE, Tanriverdi S, Tzipori S (2006) Cryptosporidium hominis: experimental challenge of healthy adults. Am J Trop Med Hyg 75(5):851–857

    Article  CAS  PubMed  Google Scholar 

  • Checkley W, White AC, Jaganath D, Arrowood MJ, Chalmers RM, Chen X-M, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA, Priest JW, Roos DS, Striepen B, Thompson RCA, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER (2015) A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect Dis 15(1):85–94. https://doi.org/10.1016/S1473-3099(14)70772-8

    Article  PubMed  Google Scholar 

  • Cook N, Paton CA, Wilkinson N, Nichols RAB, Barker K, Smith HV (2006a) Towards standard methods for the detection of Cryptosporidium parvum on lettuce and raspberries. Part 1: development and optimization of methods. Int J Food Microbiol 109(3):215–221. https://doi.org/10.1016/j.ijfoodmicro.2005.12.015

    Article  CAS  PubMed  Google Scholar 

  • Cook N, Paton CA, Wilkinson N, Nichols RAB, Barker K, Smith HV (2006b) Towards standard methods for the detection of Cryptosporidium parvum on lettuce and raspberries. Part 2: validation. Int J Food Microbiol 109(3):222–228. https://doi.org/10.1016/j.ijfoodmicro.2005.12.014

    Article  CAS  PubMed  Google Scholar 

  • Cook N, Nichols RAB, Wilkinson N, Paton CA, Barker K, Smith HV (2007) Development of a method for detection of Giardia duodenalis cysts on lettuce and for simultaneous analysis of salad products for the presence of Giardia cysts and Cryptosporidium oocysts. Appl Environ Microbiol 73(22):7388–7391. https://doi.org/10.1128/AEM.00552-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damen JG, Banwat EB, Egah DZ, Allanana JA (2007) Parasitic contamination of vegetables in Jos, Nigeria. Ann Afr Med 6:115–118

    Article  CAS  PubMed  Google Scholar 

  • Danyluk MD, Goodrich-Schneider RM, Schneider KR, Harris LJ, Worobo RW (2012) Outbreaks of foodborne disease associated with fruit and vegetable juices. Univ. Florida IFAS Ext. 1–7

  • Dawson D (2005) Foodborne protozoan parasites. Int J Food Microbiol 103:207–227

    Article  PubMed  Google Scholar 

  • Deng MQ, Cliver DO (2000) Comparative detection of Cryptosporidium parvum oocysts from apple juice. Int J Food Microbiol 54:155–162

    Article  CAS  PubMed  Google Scholar 

  • Dixon B, Parrington L, Cook A et al (2013) Detection of Cyclospora, Cryptosporidium, and Giardia in ready-to-eat packaged leafy greens in Ontario, Canada. J Food Prot 76:307–313. https://doi.org/10.4315/0362-028X.JFP-12-282

    Article  PubMed  Google Scholar 

  • Dorsch MR, Veal DA (2001) Oligonucleotide probes for specific detection of Giardia Lamblia oocyst by fluorescent in situ hybridization. J Appl Microbiol 90:836–842. https://doi.org/10.1046/j.1365-2672.2001.01325.x

    Article  CAS  PubMed  Google Scholar 

  • Downey AS, Graczyk TK (2007) Maximizing recovery and detection of Cryptosporidium parvum oocysts from spiked eastern oyster (Crassostrea virginica) tissue samples. Appl Environ Microbiol 73:6910–6915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EFSA (2007) The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the european union in 2006. EFSA J 130:1–352

    Google Scholar 

  • Efstratiou A, Ongerth JE, Karanis P (2017) Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2011-2016. Water Res 114:14–22. https://doi.org/10.1016/j.watres.2017.01.036

    Article  CAS  PubMed  Google Scholar 

  • El Sherbini GT, Kamel NO, Geneedy MR, Temsah AG (2016) A comparative study of the occurrence of Cryptosporidium parvum oocysts found on fresh fruits and vegetables sold in supermarkets and open-aired markets. Int J Curr Microbiol App Sci 5(8):760–768. https://doi.org/10.20546/ijcmas.2016.508.085

    Article  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Elsser KA, Moricz M, Proctor EM (1986) Cryptosporidium infections: a laboratory survey. CMAJ 135:211–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ethelberg S, Lisby M, Vestergaard LS, Enemark HL, Olsen KEP, Stensvold CR, Nielsen HV, Porsbo LJ, Plenser A-M, MØlbak K (2009) A foodborne outbreak of Cryptosporidium hominis infection. Epidemiol Infect 137(03):348–356. https://doi.org/10.1017/S0950268808001817

    Article  CAS  PubMed  Google Scholar 

  • Fayer R, Graczyk TK, Lewis EJ, Trout JM, Farley ACA (1998) Survival of infectious Cryptosporidium parvum oocysts in seawater and eastern oysters (Crassostrea virginica) in the Chesapeake Bay. Appl Environ Microbiol 64(3):1070–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fayer R, Lewis EJ, Trout JM, Graczyk TK, Jenkins MC, Higgins J, Xiao L, Lal AA (1999) Cryptosporidium parvum in oysters from commercial harvesting sites in the Chesapeake Bay. Emerg Infect Dis 5(5):706–710. https://doi.org/10.3201/eid0505.990513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fayer R, Trout J, Lewis E, Xiao L, Lal A, Jenkins M, Graczyk T (2002) Temporal variability of Cryptosporidium in the Chesapeake Bay. Parasitol Res 88(11):998–1003. https://doi.org/10.1007/s00436-002-0697-1

    Article  CAS  PubMed  Google Scholar 

  • Fayer R, Santin M, Macarisin D, Bauchan G (2013) Adhesive-tape recovery combined with molecular and microscopic testing for the detection of Cryptosporidium oocysts on experimentally contaminated fresh produce and a food preparation surface. Parasitol Res 112(4):1567–1574. https://doi.org/10.1007/s00436-013-3305-7

    Article  PubMed  Google Scholar 

  • Feng Y, Xiao L (2011) Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 24(1):110–140. https://doi.org/10.1128/CMR.00033-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher SM, Stark D, Harkness J, Ellis J (2012) Enteric protozoa in the developed world: a public health perspective. Clin Microbiol Rev 25:420–449. https://doi.org/10.1128/CMR.05038-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Focke F, Haase I, Fischer M (2013) Loop-mediated isothermal amplification (LAMP): methods for plant species identification in food. J Agric Food Chem 61:2943–2949. https://doi.org/10.1021/jf304295b

    Article  CAS  PubMed  Google Scholar 

  • Frazar C, Orlandi P (2007) Evaluation of two DNA template preparation methods for post-immunomagnetic separation detection of Cryptosporidium parvum in foods and beverages by PCR. Appl Environ Microbiol 73(22):7474–7476. https://doi.org/10.1128/AEM.01652-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freire-Santos F, Oteiza-López AM, Vergara-Castiblanco CA, Ares-Mazás E, Álvarez-Suárez E, García-Martín O (2000) Detection of Cryptosporidium oocysts in bivalve molluscs destined for human consumption. J Parasitol 86(4):853–854.

  • Gallas-Lindemann C, Sotiriadou I, Mahmoodi MR, Karanis P (2013) Detection of Toxoplasma gondii oocysts in different water resources by loop mediated isothermal amplification (LAMP). Acta Trop 125(2):231–236. https://doi.org/10.1016/j.actatropica.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  • Gelletlie R, Stuart J, Soltanpoor N, Armstrong R, Nichols G, AnonymousFreidank H, Kist M, Angus K, Scott C, Smith H, Mtambo M, Gibbs H, Harp J, Frayer R, Pesch B, Jackson G (1997) Cryptosporidiosis associated with school milk. Lancet (London, England) 350(9083):1005–1006. https://doi.org/10.1016/S0140-6736(05)64071-8

    Article  CAS  Google Scholar 

  • Giangaspero A, Molini U, Iorio R, Traversa D, Paoletti B, Giansante C (2005) Cryptosporidium parvum oocysts in seawater clams (Chamelea gallina) in Italy. Prev Vet Med 69(3-4):203–212. https://doi.org/10.1016/j.prevetmed.2005.02.006

    Article  PubMed  Google Scholar 

  • Gomez-Bautista M, Ortega-Mora LM, Tabares E, Lopez-Rodas V, Costas E (2000) Detection of infectious Cryptosporidium parvum oocysts in mussels (Mytilus galloprovincialis) and cockles (Cerastoderma edule). Appl Environ Microbiol 66(5):1866–1870. https://doi.org/10.1128/AEM.66.5.1866-1870.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Couso H, Freire-Santos F, Martínez-Urtaza J, García-Martín O, Ares-Mazás ME (2003) Contamination of bivalve molluscs by Cryptosporidium oocysts: the need for new quality control standards. Int J Food Microbiol 87(1-2):97–105. https://doi.org/10.1016/S0168-1605(03)00057-6

    Article  PubMed  Google Scholar 

  • Gómez-Couso H, Méndez-Hermida F, Ares-Mazás E (2006a) Levels of detection of Cryptosporidium oocysts in mussels (Mytilus galloprovincialis) by IFA and PCR methods. Vet Parasitol 141:60–65

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Couso H, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E (2006b) Cryptosporidium contamination in harvesting areas of bivalve molluscs. J Food Prot 69(1):185–190

    Article  PubMed  Google Scholar 

  • Gottfries C (2011) Detection of Cryptosporidium oocysts on lettuce and raspberries 1–13. Dissertation, University of Upssala

  • Graczyk TK, Fayer R, Lewis EJ, Trout JM, Farley CA (1999) Cryptosporidium oocysts in Bent mussels (Ischadium recurvum) in the Chesapeake Bay. Parasitol Res 85(7):518–521. https://doi.org/10.1007/s004360050590

    Article  CAS  PubMed  Google Scholar 

  • Graczyk TK, Marcogliese DJ, de Lafontaine Y, Da Silva AJ, Mhangami-Ruwende B, Pieniazek NJ (2001) Cryptosporidium parvum oocysts in zebra mussels (Dreissena polymorpha): evidence from the St Lawrence river. Parasitol Res 87(3):231–234. https://doi.org/10.1007/s004360000293

    Article  CAS  PubMed  Google Scholar 

  • Guiguet Leal DA, Pereira MA, Bueno Franco RM, Branco N, Neto R (2008) First report of Cryptosporidium spp. oocysts in oysters (Crassostrea rhizophorae) and cockles (Tivela mactroides) in Brazil. J Wat Health 6:527–532

    Article  Google Scholar 

  • Hancock-Allen J, Alden ÃNB, Cronquist AB (2017) Cryptosporidiosis outbreak at an academic animal research laboratory―Colorado, 2014. Am J Ind Med 214:208–214

    Article  Google Scholar 

  • Hanscheid T, Cristino JM, Salgado MJ (2008) Screening of auramine-stained smears of all fecal samples is a rapid and inexpensive way to increase the detection of coccidial infections. Int J Infect Dis 12(1):47–50. https://doi.org/10.1016/j.ijid.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  • Harper CM, Cowell NA, Adams BC, Langley AJ, Wohlsen TD (2002) Outbreak of Cryptosporidium linked to drinking unpasteurised milk. Commun Dis Intell Q Rep 26(3):449–450

    PubMed  Google Scholar 

  • Henriksen S, Pohlenz J (1981) Staining of Cryptosporidia by a modified Ziehl-Neelsen technique. Acta Vet Scand 22(3-4):594–596

    CAS  PubMed  Google Scholar 

  • Hohweyer J, Cazeaux C, Travaillé E, Languet E, Dumètre A, Aubert D, Terryn C, Dubey JP, Azas N, Houssin M, Loïc F, Villena I, La Carbona S (2016) Simultaneous detection of the protozoan parasites Toxoplasma, Cryptosporidium and Giardia in food matrices and their persistence on basil leaves. Food Microbiol 57:36–44. https://doi.org/10.1016/j.fm.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Kim K, Yoon S, Park W-Y, Sim S, Yu J-R (2014) Detection of Cryptosporidium parvum in environmental soil and vegetables. J Korean Med Sci 29(10):1367–1371. https://doi.org/10.3346/jkms.2014.29.10.1367

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu BM, Wu NM, Jang HD, Shih FC, Wan MT, Kung CM (2005) Using the flow cytometry to quantify the Giardia cysts and Cryptosporidium oocysts in water samples. Environ Monit Assess 104(1-3):155–162. https://doi.org/10.1007/s10661-005-1608-6

    Article  CAS  PubMed  Google Scholar 

  • Ignatius R, Lehmann M, Miksits K, Regnath T, Arvand M, Engelmann E, Futh U, Hahn H, Wagner J (1997) A new acid-fast trichrome stain for simultaneous detection of Cryptosporidium parvum and microsporidial species in stool specimens. J Clin Microbiol 35:446–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatius R, Klemm T, Zander S, Bosco Gahutu J, Kimmig P, Mockenhaupt FP, Regnath T (2016) Highly specific detection of Cryptosporidium spp. oocysts in human stool samples by undemanding and inexpensive phase contrast microscopy. Parasitol Res 115(3):1229–1234. https://doi.org/10.1007/s00436-015-4859-3

    Article  PubMed  Google Scholar 

  • Insulander M, de Jong B, Svenungsson B (2008) A food-borne outbreak of cryptosporidiosis among guests and staff at a hotel restaurant in Stockholm county, Sweden, September 2008. Euro Surveill 13

  • Insulander M, Silverlås C, Lebbad M, Karlsson L, Mattsson J, Svenungsson B (2013) Molecular epidemiology and clinical manifestations of human cryptosporidiosis in Sweden. Epidemiol Infect 141(05):1009–1020. https://doi.org/10.1017/S0950268812001665

    Article  CAS  PubMed  Google Scholar 

  • Iqbal A, Labib M, Muharemagic D, Sattar S, Dixon BR, Berezovski MV, Chalmers R, Katzer F, Ryan U, Fayer R, Xiao L, Chalmers R, Scallan E, Hoekstra R, Angulo F, Tauxe R, Widdowson M, Roy S, Budu-Amoako E, Greenwood S, Dixon B, BarkemaH MCJ, Dixon B, Coklin T, Farber J, Parrington L, Kingombe C, Bin Ross W, Dixon B, Savioli L, Smith H, Thompson A, Labib M, Berezovski M, Tuerk C, Gold L, Ellington A, Szostak J, Berezovski M, Lechmann M, Musheev M, Mak T, Krylov S, Xiao Y, Lai R, Plaxco K, Sefah K, Shangguan D, Xiong X, O’Donoghue M, Tan W, Daniels D, Chen H, Hicke B, Swiderek K, Gold L (2015) Detection of Cryptosporidium parvum oocysts on fresh produce using DNA aptamers. PLoS One 10(9):e0137455. https://doi.org/10.1371/journal.pone.0137455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ISO 18744:2016(en) (2016) Microbiology of the food chain—detection and enumeration of Cryptosporidium and Giardia in fresh leafy green vegetables and berry fruits

  • Karanis P, Ongerth J (2009) LAMP – a powerful and flexible tool for monitoring microbial pathogens. Trends Parasitol 25:498–499. https://doi.org/10.1016/j.pt.2009.07.010

    Article  PubMed  Google Scholar 

  • Karanis P, Kourenti C, Smith H (2007a) Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J Water Health 5:1–38

    Article  PubMed  Google Scholar 

  • Karanis P, Thekisoe O, Kiouptsi K, Ongerth J, Igarashi I, Inoue N (2007b) Development and preliminary evaluation of a loop-mediated isothermal amplification procedure for sensitive detection of Cryptosporidium oocysts in fecal and water samples. Appl Environ Microbiol 73:5660–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keserue H-A, Füchslin HP, Wittwer M, Nguyen-Viet H, Nguyen TT, Surinkul N, Koottatep T, Schürch N, Egli T (2012) Comparison of rapid methods for detection of Giardia spp. and Cryptosporidium spp. (oo)cysts using transportable instrumentation in a field deployment. Environ Sci Technol 46(16):8952–8959. https://doi.org/10.1021/es301974m

    Article  CAS  PubMed  Google Scholar 

  • Khurana S, Sharma P, Sharma A, Malla N (2012) Evaluation of Ziehl-Neelsen staining, auramine phenol staining, antigen detection enzyme linked immunosorbent assay and polymerase chain reaction, for the diagnosis of intestinal cryptosporidiosis. Trop Parasitol 2(1):20–23. https://doi.org/10.4103/2229-5070.97234

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotloff KL (2017) The burden and etiology of diarrheal illness in developing countries. Pediatr Clin North Am 64:799–814

    Article  PubMed  Google Scholar 

  • Lalonde LF, Gajadhar AA (2011) Detection and differentiation of coccidian oocysts by real-time PCR and melting curve analysis. J Parasitol 97:725–730. https://doi.org/10.1645/GE-2706.1

    Article  CAS  PubMed  Google Scholar 

  • Lalonde LF, Gajadhar AA (2016a) Detection of Cyclospora cayetanensis, Cryptosporidium spp., and Toxoplasma gondii on imported leafy green vegetables in Canadian survey. Food Waterborne Parasitol 2:8–14

    Article  Google Scholar 

  • Lalonde LF, Gajadhar AA (2016b) Optimization and validation of methods for isolation and real-time PCR identification of protozoan oocysts on leafy green vegetables and berry fruits. Food Waterborne Parasitol 2:1–7. https://doi.org/10.1016/j.fawpar.2015.12.002

    Article  Google Scholar 

  • Ley DH, Levy MG, Hunter L, Corbett W, Barnes HJ (1988) Cryptosporidia-positive rates of avian necropsy accessions determined by examination of auramine O-stained fecal smears. Avian Dis 32(1):108–113. https://doi.org/10.2307/1590957

    Article  CAS  PubMed  Google Scholar 

  • Li X, Guyot K, Dei-Cas E, Mallard J-P, Ballet JJ, Brasseur P (2006) Cryptosporidium oocysts in mussels (Mytilus edulis) from Normandy (France). Int J Food Microbiol 108(3):321–325. https://doi.org/10.1016/j.ijfoodmicro.2005.11.018

    Article  PubMed  Google Scholar 

  • Lowery CJ, Nugent P, Moore JE, Millar BC, Xiru X, Dooley JS (2001) PCR-IMS detection and molecular typing of Cryptosporidium parvum recovered from a recreational river source and an associated mussel (Mytilusedulis) bed in Northern Ireland. Epidemiol Infect 127(3):545–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macarisin D, Bauchan G, Fayer R (2010a) Spinacia oleracea L. leaf stomata harboring Cryptosporidium parvum oocysts: a potential threat to food safety. Appl Environ Microbiol 76:555–559

    Article  CAS  PubMed  Google Scholar 

  • Macarisin D, Santín M, Bauchan G, Fayer R (2010b) Infectivity of Cryptosporidium parvum oocysts after storage of experimentally contaminated apples. J Food Prot 73(10):1824–1829. https://doi.org/10.4315/0362-028X-73.10.1824

    Article  CAS  PubMed  Google Scholar 

  • Machado ECL, Stamford TLM, Alves LC, Melo RG, Shinohara NKS (2006) Effectiveness of Cryptosporidium spp. oocysts detection and enumeration methods in water and milk samples. Arq Bras Med Vet Zootec 58(3):432–439. https://doi.org/10.1590/S0102-09352006000300023

    Article  Google Scholar 

  • MacRae M, Hamilton C, Strachan NJC, Wright S, Ogden ID (2005) The detection of Cryptosporidium parvum and Escherichia coli O157 in UK bivalve shellfish. J Microbiol Methods 60(3):395–401. https://doi.org/10.1016/j.mimet.2004.10.017

    Article  CAS  PubMed  Google Scholar 

  • Mahon M, Doyle S (2017) Waterborne outbreak of cryptosporidiosis in the South East of Ireland: weighing up the evidence Ir J Med Sci 186(4):989–994

  • Maikai BV, Baba-Onoja EBT, Elisha IA (2013) Contamination of raw vegetables with Cryptosporidium oocysts in markets within Zaria metropolis, Kaduna State, Nigeria. Food Control 31(1):45–48. https://doi.org/10.1016/j.foodcont.2012.09.032

    Article  Google Scholar 

  • Manti A, Boi P, Amalfitano S, Puddu A, Papa S (2011) Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification. J Microbiol Methods 87(3):309–315. https://doi.org/10.1016/j.mimet.2011.09.003

    Article  PubMed  Google Scholar 

  • Marquis ND, Record NR, Fernández Robledo JA (2015) Survey for protozoan parasites in Eastern oysters (Crassostrea virginica) from the Gulf of Maine using PCR-based assays. Parasitol Int 64(5):299–302. https://doi.org/10.1016/j.parint.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  • McKerr C, Adak GK, Nichols G, Gorton R, Chalmers RM, Kafatos G, Cosford P, Charlett A, Reacher M, Pollock KG, Alexander CL, Morton S (2015) An outbreak of Cryptosporidium parvum across England and Scotland associated with consumption of fresh pre-cut salad leaves, May 2012. PLoS One 10:1–13

    Article  CAS  Google Scholar 

  • Millard PS, Gensheimer KF, Addiss DG, Sosin DM, Beckett GA, Houck-Jankoski A, Hudson A (1994) An outbreak of cryptosporidiosis from fresh-pressed apple cider. JAMA 272(20):1592–1596. https://doi.org/10.1001/jama.1994.03520200048034

    Article  CAS  PubMed  Google Scholar 

  • Miller WA, Miller MA, Gardner IA, Atwill ER, Harris M, Ames J, Jessup D, Melli A, Paradies D, Worcester K, Olin P, Barnes N, Conrad PA (2005) New genotypes and factors associated with Cryptosporidium detection in mussels (Mytilus spp.) along the California coast. Int J Parasitol 35:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Miller WA, Gardner IA, Atwill ER, Leutenegger CM, Miller MA, Hedrick RP, Melli AC, Barnes NM, Conrad PA (2006) Evaluation of methods for improved detection of Cryptosporidium spp. in mussels (Mytilus californianus). J Microbiol Methods 65(3):367–379. https://doi.org/10.1016/j.mimet.2005.08.011

    Article  CAS  PubMed  Google Scholar 

  • Minarovičová J, Kaclikova E, Krascsenicsova K, Siekel P (2007) Detection of Cryptosporidium parvum by polymerase chain reaction. J Food Nutr Res 46:58–62

    Google Scholar 

  • Minarovicová J, Kaclíková E, Krascsenicsová K, Siekel P, Kuchta T (2009) A single-tube nested real-time polymerase chain reaction for sensitive contained detection of Cryptosporidium parvum. Lett Appl Microbiol 49:568–572

    Article  PubMed  CAS  Google Scholar 

  • Minarovičová J, Lopašovská J, Valík Ľ, Kuchta T (2011) A method for the detection of Cryptosporidium parvum oocysts in milk based on microfiltration and real-time polymerase chain reaction. Food Anal Methods 4:116–120

    Article  Google Scholar 

  • Monge R, Arias ML (1996) Presence of various pathogenic microorganisms in fresh vegetables in Costa Rica. Arch Latinoam Nutr 46(4):292–294

    CAS  PubMed  Google Scholar 

  • Mongej R, Chinchilla M (1996) Presence of Cryptosporidium oocysts in fresh vegetables. J Food Prot 59(2):202–203. https://doi.org/10.4315/0362-028X-59.2.202

    Article  Google Scholar 

  • Moriarty EM, Duffy G, McEvoy JM et al (2005) The effect of thermal treatments on the viability and infectivity of Cryptosporidium parvum on beef surfaces. J Appl Microbiol 98:618–623. https://doi.org/10.1111/j.1365-2672.2004.02498.x

    Article  CAS  PubMed  Google Scholar 

  • Mosteo R, Goñi P, Miguel N, Abadías J, Valero P, Ormad MP (2016) Bioaccumulation of pathogenic bacteria and amoeba by zebra mussels and their presence in watercourses. Environ Sci Pollut Res 23:1833–1840

    Article  CAS  Google Scholar 

  • Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16:223–229

    Article  CAS  PubMed  Google Scholar 

  • Negm AY (2003) Human pathogenic protozoa in bivalves collected from local markets in Alexandria. J Egypt Soc Parasitol 33:991–998

    PubMed  Google Scholar 

  • Ocker R, Prompunjai Y, Chutipongvivate S, Karanis P (2016) Malaria diagnosis by loop-mediated isothermal amplification (LAMP) in thailand. Rev Inst Med Trop Sao Paulo 58:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orlandi PA, Lampel KA (2000) Extraction-free, filter-based template preparation for rapid and sensitive PCR detection of pathogenic parasitic protozoa. J Clin Microbiol 38:2271–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega YR, Roxas CR, Gilman RH, Miller NJ, Cabrera L, Taquiri C, Sterling CR (1997) Isolation of Cryptosporidium parvum and Cyclospora cayetanensis from vegetables collected in markets of an endemic region in Peru. Am J Trop Med Hyg 57:683–686

    Article  CAS  PubMed  Google Scholar 

  • Pacheco FT, Silva RK, Martins AS, Oliveira RR, Alcântara-Neves NM, Silva MP, Soares NM, Teixeira MC (2013) Differences in the detection of Cryptosporidium and Isospora (Cystoisospora) oocysts according to the fecal concentration or staining method used in a clinical laboratory. J Parasitol 99:1002–1008

    Article  PubMed  Google Scholar 

  • Payne P, Lancaster LA, Heinzman M, McCutchan JA (1983) Identification of Cryptosporidiumin patients with the acquired immunodeficiency syndrome. New Engl J Med 309:613–614

    Article  CAS  PubMed  Google Scholar 

  • Petersen TB, Petersen HH, Abaidoo RC, Enemark H, Dalsgaard A (2014) Occurrence of Cryptosporidium spp. oocysts in low quality water and on vegetables irrigated with low quality water in Kumasi, Ghana. In: The 5th International Giardia and Cryptosporidium Conference. Sweden, p. 116

  • Plutzer J, Törökné A, Karanis P (2010) Combination of ARAD microfibre filtration and LAMP methodology for simple, rapid and cost-effective detection of human pathogenic Giardia duodenalis and Cryptosporidium spp. in drinking water. Lett Appl Microbiol 50:82–88

    Article  CAS  PubMed  Google Scholar 

  • Pomeranz Y (1976) Scanning electron microscopy in food science and technology. Adv Food Res 22:205–307

    Article  CAS  PubMed  Google Scholar 

  • Pönka A, Kotilainen H, Rimhanen-Finne R, Hokkanen P, Hänninen ML, Kaarna A, Meri T, Kuusi M (2009) A foodborne outbreak due to Cryptosporidium parvum in Helsinki, November 2008. Euro Surveill. 14. https://doi.org/10.2807/ese.14.28.19269-en

  • Quiroz ES, Bern C, MacArthur JR, Xiao L, Fletcher M, Arrowood MJ, Shay DK, Levy ME, Glass RI, Lal A (2000) An outbreak of cryptosporidiosis linked to a foodhandler. J Infect Dis 181(2):695–700. https://doi.org/10.1086/315279

    Article  CAS  PubMed  Google Scholar 

  • Rahman J, Islam Talukder A, Hossain F, Mahomud S, Atikul Islam M, Shamsuzzoha S (2014) Detection of Cryptosporidium oocyts in commonly consumed fresh salad vegetables. Am J Microbiol Res 2:224–226

    Article  Google Scholar 

  • Ranjbar-Bahadori S, Mostoophi A, Shemshadi B (2013) Study on Cryptosporidium contamination in vegetable farms around Tehran. Trop Biomed 30(2):193–198

    PubMed  Google Scholar 

  • Rayan HZ, Eida OM, El-hamshary EM, Ahmed SA (2009) Detection of human Cryptosporidium species in surface water sources in ismailia using polymerase chain reaction. Parasitol United J 2:119–126

    Google Scholar 

  • Rimseliene G, Vold L, Robertson L, Nelke C, Soli K, Johansen OH, Thrana FS, Nygard K (2011) An outbreak of gastroenteritis among schoolchildren staying in a wildlife reserve: thorough investigation reveals Norway’s largest cryptosporidiosis outbreak. Scand J Public Health 39:287–295

    Article  PubMed  Google Scholar 

  • Ripabelli G, Leone A, Sammarco ML, Fanelli I, Grasso GM, McLauchlin J (2004) Detection of Cryptosporidium parvum oocysts in experimentally contaminated lettuce using filtration, immunomagnetic separation, light microscopy, and PCR. Foodborne Pathog Dis 1(4):216–222. https://doi.org/10.1089/fpd.2004.1.216

    Article  CAS  PubMed  Google Scholar 

  • Robertson LJ (2014) Approaches to detecting Cryptosporidium oocysts in different food matrices, In: Cryptosporidium as a foodborne pathogen. Springer New York, New York, pp. 25–38

  • Robertson LJ, Gjerde B (2000) Isolation and enumeration of Giardia cysts, Cryptosporidium oocysts, and Ascaris eggs from fruits and vegetables. J Food Prot 63(6):775–778. https://doi.org/10.4315/0362-028X-63.6.775

    Article  CAS  PubMed  Google Scholar 

  • Robertson LJ, Gjerde B (2001a) Occurrence of parasites on fruits and vegetables in Norway. J Food Prot 64(11):1793–1798. https://doi.org/10.4315/0362-028X-64.11.1793

    Article  CAS  PubMed  Google Scholar 

  • Robertson LJ, Gjerde B (2001b) Factors affecting recovery efficiency in isolation of Cryptosporidium oocysts and Giardia cysts from vegetables for standard method development. J Food Prot 64(11):1799–1805. https://doi.org/10.4315/0362-028X-64.11.1799

    Article  CAS  PubMed  Google Scholar 

  • Robertson LJ, Gjerde B (2008) Development and use of a pepsin digestion method for analysis of shellfish for Cryptosporidium oocysts and Giardia cysts. J Food Prot 71(5):959–966. https://doi.org/10.4315/0362-028X-71.5.959

    Article  CAS  PubMed  Google Scholar 

  • Robertson LJ, Huang Q (2012) Analysis of cured meat products for Cryptosporidium oocysts following possible contamination during an extensive waterborne outbreak of cryptosporidiosis. J Food Prot 75(5):982–988. https://doi.org/10.4315/0362-028X.JFP-11-525

    Article  CAS  PubMed  Google Scholar 

  • Robertson LJ, Johannessen GS, Gjerde BK, Loncarevic S (2002) Microbiological analysis of seed sprouts in Norway. Int J Food Microbiol 75(1-2):119–126. https://doi.org/10.1016/S0168-1605(01)00738-3

    Article  PubMed  Google Scholar 

  • Rodríguez-Hernandez J, Canut-Blasco A, Ledesma-Garcia M, Martín-Sánchez AM (1994) Cryptosporidium oocysts in water for human consumption. Comparison of staining methods. Eur J Epidemiol 10(2):215–218. https://doi.org/10.1007/BF01730373

    Article  PubMed  Google Scholar 

  • Rohde A, Hammerl JA, Appel B et al (2015) FISHing for bacteria in food--a promising tool for the reliable detection of pathogenic bacteria? Food Microbiol 46:395–407. https://doi.org/10.1016/j.fm.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  • Romanova TV, Shkarin VV, Khazenson LB (1992) Group cryptosporidiosis morbidity in children. Med Parazitol (Mosk) 3:50–52

    Google Scholar 

  • Rosado-García FM, Guerrero-Flórez M, Karanis G, Hinojosa MDC, Karanis P (2017) Water-borne protozoa parasites: the Latin American perspective. Int J Hyg Environ Health 220:783–798

    Article  PubMed  Google Scholar 

  • Said DES (2012) Detection of parasites in commonly consumed raw vegetables. Alex J Med 48:345–352

    Article  Google Scholar 

  • Schets FM, van den Berg HHJL, Engels GB, Lodder WJ, de Roda Husman AM (2007) Cryptosporidium and Giardia in commercial and non-commercial oysters (Crassostrea gigas) and water from the Oosterschelde, the Netherlands. Int J Food Microbiol 113:189–194

    Article  PubMed  Google Scholar 

  • Sharma KP, Chattopadhyay UK (2015) Isolation and identification of Cryptosporidium spp. from raw meat amples sold in open markets of the city of Kolkata. IOSR J Agric Vet Sci Ver I 8:2319–2372

    Google Scholar 

  • Shields JM, Lee MM, Murphy HR (2012) Use of a common laboratory glassware detergent improves recovery of Cryptosporidium parvum and Cyclospora cayetanensis from lettuce, herbs and raspberries. Int J Food Microbiol 153:123–128

    Article  CAS  PubMed  Google Scholar 

  • Shields JM, Joo J, Kim R, Murphy HR (2013) Assessment of three commercial DNA extraction kits and a laboratory-developed method for detecting Cryptosporidium and Cyclospora in raspberry wash, basil wash and pesto. J Microbiol Methods 92:51–58

    Article  CAS  PubMed  Google Scholar 

  • Smith HV (1998) Detection of parasites in the environment. Parasitology 117(Suppl):S113–S141

    PubMed  Google Scholar 

  • Smith HV, Nichols RAB (2010) Cryptosporidium: detection in water and food. Exp Parasitol 124:61–79

    Article  PubMed  Google Scholar 

  • Squire SA, Ryan U (2017) Cryptosporidium and Giardia in Africa: current and future challenges. Parasit Vectors 10:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeuchi K, Frank JF (2001) Confocal microscopy and microbial viability detection for food research. J Food Prot 64(12):2088–2102. https://doi.org/10.4315/0362-028X-64.12.2088

    Article  CAS  PubMed  Google Scholar 

  • TDH (2015) Disease investigations linked to increased raw milk consumption. TDH Invetigating Cases Gastrointest. Dis. http://outbreakdatabase.com/reports/2015_Raw_Milk_Crypto_Tennessee.pdf

  • Tedde T, Piras G, Salza S, Nives RM, Sanna G, Tola S, Culurgioni J, Piras C, Merella P, Garippa G, Virgilio S (2013) Investigation into Cryptosporidium and Giardia in bivalve mollusks farmed in Sardinia region and destined for human consumption. Ital J Food Saf 2(2):26. https://doi.org/10.4081/ijfs.2013.e26

    Article  CAS  Google Scholar 

  • Tei FF, Kowalyk S, Reid JA, Presta MA, Yesudas R, Mayer DCG (2016) Assessment and molecular characterization of human intestinal parasites in bivalves from Orchard Beach, NY, USA. Int J Environ Res Public Health 13(4):381. https://doi.org/10.3390/ijerph13040381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thekisoe OMM, Bazie RSB, Coronel-Servian AM, Sugimoto C, Kawazu S-I, Inoue N (2009) Stability of loop-mediated isothermal amplification (LAMP) reagents and its amplification efficiency on crude trypanosome DNA templates. J Vet Med Sci 71(4):471–475. https://doi.org/10.1292/jvms.71.471

    Article  CAS  PubMed  Google Scholar 

  • Ugwoke EV, Umoh JU, Okolocha EC, Lawal IA (2013) Cryptosporidium oocysts in Anodonta sp. (bivalve mollusc) as indicators of pollution of Tiga Lake ecosystem in Kano State, Nigeria. J Parasitol Vector Biol 5:77–82

    Google Scholar 

  • Utaaker KS, Huang Q, Robertson LJ (2015) A reduced-cost approach for analyzing fresh produce for contamination with Cryptosporidium oocysts and/or Giardia cysts. Food Res Int 77:326–332

    Article  CAS  Google Scholar 

  • Utaaker KS, Kumar A, Joshi H, Chaudhary S, Robertson LJ (2017) Checking the detail in retail: occurrence of Cryptosporidium and Giardia on vegetables sold across different counters in Chandigarh, India. Int J Food Microbiol 263:1–8. https://doi.org/10.1016/j.ijfoodmicro.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  • Valdez LM, Dang H, Okhuysen PC, Chappell CL (1997) Flow cytometric detection of Cryptosporidium oocysts in human stool samples. J Clin Microbiol 35(8):2013–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vojdani JD, Beuchat LR, Tauxe RV (2008) Juice-associated outbreaks of human illness in the United States, 1995 through 2005. J Food Prot 71(2):356–364. https://doi.org/10.4315/0362-028X-71.2.356

    Article  PubMed  Google Scholar 

  • Widerström M, Schönning C, Lilja M, Lebbad M, Ljung T, Allestam G, Ferm M, Björkholm B, Hansen A, Hiltula J, Långmark J, Löfdahl M, Omberg M, Reuterwall C, Samuelsson E, Widgren K, Wallensten A, Lindh J (2014) Large outbreak of Cryptosporidium hominis infection transmitted through the public water supply, Sweden. Emerg Infect Dis 20:581–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Willis JE, Greenwood S, Spears J, Davidson J, McClure C, McClure JT (2012) Ability of oysters (Crassostrea virginica) to harbour zoonotic parasites Cryptosporidium parvum and Giardia duodenalis during constant or limited exposures in a static tank system. Oral Presentation, IV International Giardia & Cryptosporidum Conference, Wellington, New Zealand. Page 126 of Abstract book

  • Yang R, Paparini A, Monis P, Ryan U (2014) Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int J Parasitol 44(14):1105–1113. https://doi.org/10.1016/j.ijpara.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsuo M, Miyoshi T, Uchino K, Nakaguchi H, Fukumoto T, Teranaka Y, Tanaka T (2007) An outbreak of cryptosporidiosis suspected to be related to contaminated food, October 2006, Sakai City, Japan. Jpn J Infect Dis 60(6):405–407

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahira A. Ahmed or Panagiotis Karanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.A., Karanis, P. An overview of methods/techniques for the detection of Cryptosporidium in food samples. Parasitol Res 117, 629–653 (2018). https://doi.org/10.1007/s00436-017-5735-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5735-0

Keywords

Navigation