Advertisement

Parasitology Research

, Volume 116, Issue 8, pp 2057–2063 | Cite as

Molecular studies with Aedes (Stegomyia) aegypti (Linnaeus, 1762), mosquito transmitting the dengue virus

  • Luciana Patrícia Lima Alves PereiraEmail author
  • Maria Cristiane Aranha Brito
  • Felipe Bastos Araruna
  • Marcelo Souza de Andrade
  • Denise Fernandes Coutinho Moraes
  • Antônio Carlos Romão Borges
  • Emygdia Rosa do Rêgo Barros Pires Leal
Review

Abstract

Dengue is an infectious viral disease, which can present a wide clinical picture, ranging from oligo or asymptomatic forms, to bleeding and shock, and can progress to death. The disease problem has increased in recent years, especially in urban and suburban areas of tropical and subtropical regions. There are five dengue viruses, called serotypes (DEN-1, DEN-2, DEN-3, DEN-4, and DEN-5), which belong to the Flaviviridae family and are transmitted to humans through infected mosquito bites, with the main vector the Aedes aegypti mosquito (Linnaeus, 1762). Studies performed with Ae. aegypti, aimed at their identification and analysis of their population structure, are fundamental to improve understanding of the epidemiology of dengue, as well for the definition of strategic actions that reduce the transmission of this disease. Therefore, considering the importance of such research to the development of programs to combat dengue, the present review considers the techniques used for the molecular identification, and evaluation of the genetic variability of Ae. aegypti.

Keywords

Aedes aegypti Dengue Molecular biology Molecular identification Genetic variability 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Apostol BL, Black WC IV, Reiter P, Miller BR (1996) Population genetics with RAPD—PCR markers: the breeding structure of Aedes aegypti in Puerto Rico. Heredity 76:325–334CrossRefPubMedGoogle Scholar
  2. Ayres CFJ, Melo-Santos MAV, Solé-Cava AM, Furtado AF (2003) Genetic differentiation of Aedes aegypti (Diptera: Culicidae), the major dengue vector in Brazil. J Med Entomol 40:430–435. doi: 10.1603/0022-2585-40.4.430 CrossRefPubMedGoogle Scholar
  3. Barata EMF, Costa AIP, Neto FC, Glasser CM, Barata JM, Natal D (2001) População de Aedes aegypti (l.) em área endêmica de dengue, Sudeste do Brasil. Rev Saúde Pública 35(3):237–242CrossRefPubMedGoogle Scholar
  4. Barreto ML, Teixeira MG (2008) Dengue no Brasil: situação epidemiológica e contribuições para uma agenda de pesquisa. Estudos Avançados 64:22Google Scholar
  5. Beebe NW, Whelan PI, Hurk AVD, Ritchie SA, Cooper RD (2005) Genetic diversity of the dengue vector Aedes aegypti in Australia and implications for future surveillance and mainland incursion monitoring. CDI 29:299–304PubMedGoogle Scholar
  6. Bosio CF, Harrington LC, Jones JW, Sithiprasasna R, Norris DE, Scott TW (2005) Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. AmJTrop Med Hyg 72:434–442Google Scholar
  7. Bracco JE, Capurro ML, Lourenço-de-Oliveira R, Sallum MAM (2007) Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence of multiple introductions. Mem Inst Oswaldo Cruz 102:573–580CrossRefPubMedGoogle Scholar
  8. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde (2005) Guia de vigilância epidemiológica/Ministério da Saúde, Secretaria de Vigilância em Saúde. – 6. ed. – Brasília: Ministério da Saúde.Google Scholar
  9. Brasil. Ministério da Saúde – Descrição da doença. http://portalsaude.saude.gov.br/index.php/descricao-da-doenca-dengue. Accessed 03 november 2016.
  10. Bronzato AR (2015) Análise da estrutura populacional de Aedes aegytpi (Linnaeus, 1762) em algumas regiões do Brasil. Dissertação, Universidade Estadual Paulista.Google Scholar
  11. Chan A, Chiang LP, Hapuarachchi HC, Tan CH, Pang SC, Lee R, Lee KS, Ching L, Lam-Phua SG (2014) DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasit & Vectors 7:1–12CrossRefGoogle Scholar
  12. Das B, Swain S, Patra A, Das M, Tripathy HK, Mohapatra N, Kar SK, Hazra RK (2012) Development and evaluation of a single-step multiplex PCR to differentiate the aquatic stages of morphologically similar Aedes (subgenus: Stegomyia) species. Trop Med and Int Health 17(2):235–243. doi: 10.1111/j.1365-3156.2011.02899 CrossRefGoogle Scholar
  13. Dias CN, Alves LPL, Rodrigues KAF, Brito MCA, Rosa CS, Amaral FMM, Monteiro OS, Andrade EHA, Maia JGS, Moraes DFC (2015) Chemical composition and larvicidal activity of essential oils extracted from Brazilian Legal Amazon plants against Aedes aegypti L. (Diptera: Culicidae). Evidance-Based Complement Alternative Medicine:1–8  dx.doi.org/10.1155/2015/490765
  14. Ebi KL, Nealon J (2016) Dengue in a changing climate. Environ Res 151:115–123. doi: 10.1016/j.envres.2016.07.026
  15. Forattini OP. 2002 Culicidologia Médica: Identificação, Biologia, Epidemiologia. São Paulo: Edusp; . v.2.Google Scholar
  16. Fraga EC, Santos JMM, Maia JF (2003) Enzymatic variability in Aedes aegypti (Diptera: Culicidae) populations from Manaus-AM, Brazil. Genet Mol Biol 26:181–187CrossRefGoogle Scholar
  17. Freitas MTS, Gomes-Júnior PP, Batista MVA, Leal-Balbino TC, Araujo AL, Balbino VQ (2014) Novel DNA extraction assay for molecular identification of Aedes spp eggs. Genet Mol Res 13:8776–8782CrossRefPubMedGoogle Scholar
  18. Gadelha DP, Toda AT (1985) Biologia e comportamento do Aedes aegypti. Rev Brasl Malariol D Trop 37:29–36Google Scholar
  19. García-Franco F, Munõz ML, Lozano-Fuentes S, Fernandez-Salas I, Garcia-Rejon J, Beaty BJ, Black WC IV (2002) Large genetic distances among Aedes aegypti populations along the south pacific coast of Mexico. AmJTrop Med Hyg 6:594–598CrossRefGoogle Scholar
  20. Guissoni ACP, Silva IG, Geris R, Cunha LC, Silva HHG (2013) Atividade larvicida de Anacardium occidentale como alternativa ao controle de Aedes aegypti e sua toxicidade em Rattus norvegicus. Rev Bras Plantas Med 15:3CrossRefGoogle Scholar
  21. Gupta K, Dhawan R, Kajla M, Kumar S, Jnanasiddhy B, Singh NK, Dixit R, Bihani A, Gupta L (2010) Molecular identification of Aedes aegypti mosquitoes from Pilani region of Rajasthan, India. Jpn J Infect Dis 63:312–316Google Scholar
  22. Guzman MG, Harris E (2014) Dengue. Lancet 385:453–465Google Scholar
  23. Higa Y, Toma T, Tsuda Y, Miyagi IA (2010) Multiplex PCR-based molecular identification of five morphologically related, medically important subgenus Stegomyia mosquitoes from the genus Aedes (Diptera: Culicidae) found in the Ryukyu Archipelago, Japan. Jpn J Infect Dis 63:312–316PubMedGoogle Scholar
  24. Hiragi C, Simões K, Martins E, Queiroz P, Lima L, Monnerat R (2009) Variabilidade genética em populações de Aedes aegypti (L.) (Diptera: Culicidae) utilizando marcadores de RAPD. Neotrop Entomol 38:542–547CrossRefPubMedGoogle Scholar
  25. Hoffmann LV, Barroso PAV (2006) Marcadores moleculares como ferramentas para estudos de genética de plantas. Embrapa, Campina Grande.Google Scholar
  26. Julio NB, Chiappero MB, Rossi HJ, Dueñas JCR, Gardenal CN (2009) Genetic structure of Aedes aegypti in the city of Córdoba (Argentina), a recently reinfested area. Mem Inst Oswaldo Cruz 104:626–631CrossRefPubMedGoogle Scholar
  27. Júnior FPC (2010) Ciclos de vidas comparados e variabilidade genética de Aedes aegypti (Diptera: Culicidae) do semi-árido paraibano. Dissertação, Universidade Estadual da Paraíba.Google Scholar
  28. Lacerda DR, Acedo MDP, Lemos Filho JP, Lovato MB (2002) A técnica de RAPD: uma ferramenta molecular em estudos de conservação de plantas. Lundiana 3:87–92Google Scholar
  29. Lourenço-de-Oliveira R, Vazeille M, Filippis AMB, Failloux AB (2004) Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viroses. T Roy Soc Trop Med H 98:43–54CrossRefGoogle Scholar
  30. Matsui QYP (2013) Sequenciamento parcial do gene codificador da cromo-helicase ligadora de DNA (CHD-1) de Mimus saturninus (Lichtenstein, 1823) e análise in sílico do gene da subunidade 1 da citocromo oxidase (COI) em Mimidae (Bonaparte, 1853). Dissertação, Universidade do Vale do Paraíba.Google Scholar
  31. Mendonça BAA, Sousa ACB, Souza AP, Scarpassa VM (2014) Temporal genetic structure of major dengue vector Aedes aegypti from Manaus, Amazonas, Brazil. Acta Trop 134:80–88CrossRefPubMedGoogle Scholar
  32. Muller GA, Marcondes CB, Navarro-Silva MA (2010) Aplicação de marcadores microssatélites para o estudo de Culicidae (Diptera): revisão com especial referência a Haemagogus. Bol Mal Salud Amb L:175-186.Google Scholar
  33. Murray NEA, Quam MB, Wilder-Smith A (2013) Epidemiology of dengue: past, present and future prospects. Clin Epidemiol 5:299–309. doi: 10.2147/CLEP.S34440
  34. Mustafa LtCol MS, Rasotgi Col V, Jain Col S, LtCol G (2015) Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Medical journal armed forces índia voloume 71:67–70CrossRefGoogle Scholar
  35. Oliveira JA, Crispim BA, Martins NM, Silva AO, Dourado PLR, Rocha MP, Grisolia AB (2013a) Sequências de gene mitocondrial para identificação de espécies animais. Rev Colombiana Cienc Anim 5:396–407Google Scholar
  36. Oliveira VS, Pimenteira C, Silva-Alves DCB, Leal LLL, RAW N-F, DMAF N, Geanne KN, Santos KA, JVA D, Thereza AS (2013b) The enzyme 3-hydroxykynurenine transaminase as potential target for 1,2,4-oxadiazoles with larvicide activity against the dengue vector Aedes aegypti. Bioorganic & Medicinal Chem 21(22):6996–7003CrossRefGoogle Scholar
  37. Olson KE, Allen-Miura T, Rayms-Keller A, Carlson JO, Coates C, Jasinskiene N, James A, Beaty B, Higgs S, Olson KE (1999) Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA. Proc of the Nat Acad of Scien 96:13399–13403CrossRefGoogle Scholar
  38. Paduan KS, Ribolla PEM (2008) Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J Med Entomol 45:59–67. doi: 10.1603/00222585%282008%2945%5B59%3AMDPAHI%5D2.0.CO%3B2 CrossRefGoogle Scholar
  39. Paduan KS, Araújo-Júnior JP, Ribolla PEM (2006) Genetic variability in geographical populations of Aedes aegypti (Diptera, Culicidae) in Brazil elucidated by molecular markers. Genet Mol Biol 29:391–395CrossRefGoogle Scholar
  40. Paneto GG (2006) Utilização do DNA mitocondrial no contexto forense brasileiro. Dissertação, Universidade Estadual Paulista.Google Scholar
  41. Patarro TF (2010) Estudo da variabilidade genética de populações de Aedes aegypti (Diptera, Culicidae), resistentes e suscetíveis a inseticidas. Dissertação, Universidade Estadual Paulista.Google Scholar
  42. Saengwiman S, Aroonkesorn A, Dedvisitsakul P, Sakdee S, Leetachewa S, Angsuthanasombat C, Pootanak K (2011) In vivo identification of Bacillus thuringiensis Cry4Ba toxin receptors by RNA interference knockdown of glycosylphosphatidylinositol-linked aminopeptidase N transcripts in Aedes aegypti larvae. Bioch Biophys Res Commun 407:4:708–713CrossRefGoogle Scholar
  43. Santos VM, MLG M, MTM A, Avila PE, Kirchgatter K (2003) Analysis of genetic relatedness between populations of Aedes aegypti from different geographic regions of São Paulo state, Brazil. Rev Inst Med trop S Paulo 45:99–101CrossRefPubMedGoogle Scholar
  44. Sayson SL, Gloria-Soria A, Powell JR, Edillo FE (2015) Seasonal genetic changes of Aedes aegypti (Diptera: Culicidae) populations in selected sites of Cebu City, Philippines. J Med Entomol 52:638–646. doi: 10.1093/jme/tjv056 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Silva RG, Pinhati FR, Silva JT (2015) Análise da variabilidade genética por RAPD de linhagens isoladas de solo e lodo impactados com efluente industrial. Revista da Biologia 14:1–5. doi: 10.7594/revbio.14.01.01 CrossRefGoogle Scholar
  46. Soares TS, Watanabe RMO, Lemos FJA, Tanaka AS (2011) Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegyptilarvae and identification of digestive enzymes. Gene 489(2):70-75Google Scholar
  47. Sousa GB, Blanco A, Gardenal CM (2001) Genetic relationships among Aedes aegypti (Diptera: Culicidae) populations from Argentina using random amplified polymorphic DNA polymerase chain reaction markers. J Med Entomol 38:371–375. doi: 10.1603/0022-2585-38.3.371 CrossRefPubMedGoogle Scholar
  48. Souza KR (2011) Avaliação de parâmetros moleculares para vigilância entomológica do Aedes (Stegomyia) aegypti (Linnaeus, 1762). Dissertação, Fundação Oswaldo Cruz.Google Scholar
  49. Spenassatto C (2011) Desenvolvimento de metodologia high-throughput para estudo populacional do mosquito Aedes aegypti e comparação de dados de genes nucleares com dados de genes mitocondriais. Dissertação, Universidade Estadual Paulista Júlio de Mesquita Filho.Google Scholar
  50. Sukonthabhirom S, Saengtharatip S, Jirakanchanakit N, Rongnoparut P, Yoksan S, Daorai A, Chareonviriyaphap T (2009) Genetic structure among Thai populations of Aedes aegypti mosquitoes. J Vector Ecol 34:43–49. doi: 10.3376/038.034.0106 CrossRefPubMedGoogle Scholar
  51. Suresh U, Murugan K, Benelli G, Marcello N, Barnard DR, Chellasamy PP, Kumar M, Subramaniam J, Devakumar D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRefPubMedGoogle Scholar
  52. Tien TK, Vazeille-Falcoz M, Mousson L, Huong TH, Rodhain F, Huong NT, Failloux A (1999) Aedes aegypti in Ho Chi Minh City (Viet Nam): susceptibility to dengue 2 virus and genetic differentiation. T Roy Soc Trop Med H 93:581–586CrossRefGoogle Scholar
  53. Travanty EA, Adelman ZN, Franz AWE, Keene KM, Beaty BJ, Blair CD, James AA, Olson KE (2004) Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti. Insect Biochem Mol Bio Oxford 34:607–613CrossRefGoogle Scholar
  54. World Health Organization and World Meteorological Organization (2012) Atlas of health and climate. Geneva, Switzerland:World Health Organization and World Meteorological Organization. p. 21.Google Scholar
  55. Zara ALS, Santos ASM, Fernandes-Oliveira ES, Carvalho RG, Coelho GE (2016) Estratégias de controle do Aedes aegypti: uma revisão. Epidemiol Serv Saude 25:391–404PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Luciana Patrícia Lima Alves Pereira
    • 1
    Email author
  • Maria Cristiane Aranha Brito
    • 1
  • Felipe Bastos Araruna
    • 1
    • 2
  • Marcelo Souza de Andrade
    • 1
    • 3
  • Denise Fernandes Coutinho Moraes
    • 1
  • Antônio Carlos Romão Borges
    • 1
  • Emygdia Rosa do Rêgo Barros Pires Leal
    • 1
    • 3
  1. 1.Programa de Pós-Gradução em Biotecnologia da Rede RenorbioUniversidade Federal do MaranhãoSão LuísBrazil
  2. 2.Universidade Federal do PiauíParnaíbaBrazil
  3. 3.Laboratório de Estudos Genômicos e Histocompatibilidade—LEGHHospital Universitário da Universidade Federal do MaranhãoSão LuísBrazil

Personalised recommendations