Skip to main content

Advertisement

Log in

Sterilization of blow fly eggs, Chrysomya megacephala and Lucilia cuprina, (Diptera: Calliphoridae) for maggot debridement therapy application

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Maggot debridement therapy (MDT) is an application of sterile laboratory-reared blow fly larvae to remove necrotic tissue and disinfect wounds for medical conditions. For effective application, the blow fly larvae used in the wound treatment are required to be in aseptic condition. Here, we report the results of a detailed assessment of bacteria and fungi isolated from the eggs of two blow fly species, Chrysomya megacephala (F.) and Lucilia cuprina (Wiedemann) before and after sterilization by disinfectants Chlorhex-C, povidone-iodine, and sodium hypochlorite. We also assess the survival ability of larvae and their sterility after the cleansing process. The results indicate that the isolated microorganisms from the control group of both the species consisted of 10 species of gram-positive bacteria, 21 species of gram-negative bacteria, and 4 species of yeast. As for sterility testing, the eggs and the larvae of C. megacephala were found to have been completely sterilized after being subjected to thioglycollate medium for 5 days, leading to aseptic larvae. By contrast, some microorganisms from the bacterial culture were still detected in the L. cuprina larvae treated with Chlorhex-C and povidone-iodine. The survival ability of the larvae in both the species was not significantly different between the treated and the control groups. Due to its high disinfection efficacy in destroying microorganisms in both the blow fly eggs, sodium hypochlorite is recommended for preparing sterile larvae before using MDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alsaimary IEA (2010) Bacterial wound infections in diabetic patients and their therapeutic implications. Med Pract Rev 1:12–15

    Google Scholar 

  • Bear WS (1931) The treatment of chronic osteomyelitis with the maggot (larva of the blowfly). J Bone Jt Surg 13:438–475

    Google Scholar 

  • Bernard K (2012) The genus Corynebacterium and other medically relevant coryneform-like bacteria. J Clin Microbiol 50:3152–3158

    Article  PubMed  PubMed Central  Google Scholar 

  • Brundage AL, Crippen TL, Tomberlin JK (2016) Methods for external disinfection of blow fly (Diptera: Calliphoridae) eggs prior to use in wound debridement therapy. Wound Repair Regen 24:384–393

    Article  PubMed  Google Scholar 

  • Bunchu N, Sukontason K, Sanit S, Chidburee P, Kurahashi H, Sukontason KL (2012) Occurrence of blow fly species (Diptera: Calliphoridae) in Phitsanulok Province, Northern Thailand. Trop Biomed 29:532–543

    PubMed  Google Scholar 

  • Courtenay M, Church JC, Ryan TJ (2000) Larva therapy in wound management. J R Soc Med 93:72–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dallavecchia DL, da Silva Filho RG, Aguiar VM (2014) Sterilization of Chrysomya putoria (Insecta: Diptera: Calliphoridae) eggs for use in biotherapy. J Insect Sci 14:160. doi:10.1093/jisesa/ieu022

    Article  PubMed  Google Scholar 

  • Dossey L (2002) Maggots and leeches: when science and aesthetics collide. Altern Ther Health Med 8:12–16

    Google Scholar 

  • Estrela C, Estrela CR, Barbin EL, Spano JC, Marchesan MA, Pecora JD (2002) Mechanism of action of sodium hypochlorite. Braz Dent J 13:113–117

    Article  PubMed  Google Scholar 

  • Evans DJ, Allison DG, Brown MRW, Gilbert P (1990) Effect of growth-rate on resistance of Gram-negative biofilms to cetrimide. J Antimicrob Chemother 26:473–478. doi:10.1093/jac/26.4.473

    Article  CAS  PubMed  Google Scholar 

  • Fine A, Alexander H (1934) Maggot therapy-technique and clinical application. J Bone Jt Surg 16:572–582

    Google Scholar 

  • Fleischmann W, Russ M, Moch D, Marquardt C (1999) Biosurgery—maggots, are they really the better surgeons? Chirurg 70:1340–1346

    Article  CAS  PubMed  Google Scholar 

  • Griffin PM, Tauxe RV (1991) The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev 13:60–98

    Article  CAS  PubMed  Google Scholar 

  • Heym B, Rimareix F, Lortat-Jacob A, Nicolas-Chanoine MH (2004) Bacteriological investigation of infected pressure ulcers in spinal cord-injured patients and impact on antibiotic therapy. Spinal Cord 42:230–234

    Article  CAS  PubMed  Google Scholar 

  • Horn KL, Cobb AH, Gates GA (1976) Maggot therapy for subacute mastoiditis. Arch Otolaryngol 102:377–379

    Article  CAS  PubMed  Google Scholar 

  • Kingu HJ, Kamande Kuria S, Villet MH, Nthekeleng Mkhize J, Dhaffala A, Michael Iisa J (2012) Cutaneous myiasis: is Lucilia cuprina safe and acceptable for maggot debridement therapy? J Cosmet Dermatol Sci Appl 2:79–82

  • John MB, Didier P (2013) Guideline for hand hygiene in health-care settings. Am J Infect Control 30:S1–S46

    Google Scholar 

  • Jones RN (2010) Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 51:S81–S87

    Article  PubMed  Google Scholar 

  • Kawecki D, Kwiatkowski A, Sawicka-Grzelak A, Durlik M, Paczek L, Chmura A, Mlynarczyk G, Rowinski W, Luczak M (2011) Urinary tract infections in the early posttransplant period after kidney transplantation: etiologic agents and their susceptibility. Transplant Proc 43:2991–2993

    Article  CAS  PubMed  Google Scholar 

  • Macedo JL, Santos JB (2005) Bacterial and fungal colonization of burn wounds. Mem Inst Oswaldo Cruz 100:535–539

    Article  PubMed  Google Scholar 

  • Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR (1999) Guideline for prevention of surgical site infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control 27:97–132

    Article  CAS  PubMed  Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsui H, Kawabata T, Ugaki S, Fujii Y, Sakrai S, Sano S (2010) Maggot debridment therapy for treating diabetic foot ulcers in Japan. In: 8th international conference on biotherapy, Los Angeles, CA, USA

  • Mohd Masri S, Nazni WA, Lee HL, Rogayah TA T, Subramaniam S (2005) Sterilisation of Lucilia cuprina Wiedemann maggots used in therapy of intractable wounds. Trop Biomed 22:185–189

    CAS  PubMed  Google Scholar 

  • Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi R, Samania S, Pishvab N, Moheimania F (2003) Formulation and clinical evaluation of povidone-iodine ophthalmic drop. Iran J Pharma Res 2:157–160

    CAS  Google Scholar 

  • Namias N, Varela EJ, Varas RP, Quintana O, Ward GC (2000) Biodebridement: a case report of maggot therapy for limb salvage after fourth-degree burns. J Burn Care Rehabil 21:254–257

    Article  CAS  PubMed  Google Scholar 

  • Nigam Y, Bexfield A, Thomas S, Ratcliffe NA (2006) Maggot therapy: the science and implication for CAM. Part I—history and bacterial resistance. Evid Based Complement Alternat Med 3:223–227

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Hara CM, Brenner FW, Miller JM (2000) Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 13:534–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul AG, Ahmad NW, Lee HL, Ariff AM, Saranum M, Naicker AS, Osman Z (2009) Maggot debridement therapy with Lucilia cuprina: a comparison with conventional debridement in diabetic foot ulcers. Int Wound J 6:39–46

    Article  PubMed  Google Scholar 

  • Pearlman SA, Higgins S, Eppes S, Bhat AM, Klein JD (1998) Infective endocarditis in the premature neonate. Clin pediatr 37:741–746

    Article  CAS  Google Scholar 

  • Portenier I, Waltimo T, Ørstavik D, Haapasalo M (2006) Killing of Enterococcus faecalis by MTAD and chlorhexidine digluconate with or without cetrimide in the presence or absence of dentine powder or BSA. J Endod 32:138–141

    Article  PubMed  Google Scholar 

  • Rutala WA, Weber DJ (1999) Infection control: the role of disinfection and sterilization. J Hosp Infect 43(Suppl):S43–S55

    Article  PubMed  Google Scholar 

  • Schaffer JN, Pearson MM (2015) Proteus mirabilis and urinary tract infections. Microbiol Spectr 3. doi:10.1128/microbiolspec.UTI-0017-2013

  • Sherman RA (1998) Maggot therapy in modern medicine. Infect Med 15:651–656

    Google Scholar 

  • Sherman RA (2002) Maggot versus conservative debridement therapy for the treatment of pressure ulcers. Wound Repair Regen 10:208–214

    Article  PubMed  Google Scholar 

  • Sherman RA (2003) Maggot therapy for treating diabetic foot ulcers unresponsive to conventional therapy. Diabetes Care 26:446–451

    Article  PubMed  Google Scholar 

  • Sherman RA, Hall MJ, Thomas S (2000) Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol 45:55–81

    Article  CAS  PubMed  Google Scholar 

  • Sherman RA, Wyle FA (1996) Low-cost, low-maintenance rearing of maggots in hospitals, clinics, and schools. Am J Trop Med Hyg 54:38–41

  • Simmons SW (1934) Sterilization of blowfly eggs in the culture of surgical maggots for use in the treatment of pyogenic infections. Am J Surg 25:140–147

    Article  Google Scholar 

  • Singla N, Kaistha N, Gulati N, Chander J (2010) Morganella morganii could be an important intensive care unit pathogen. Indian J Crit Care Med 14:154–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Steenvoorde P, Jacobi C, Wong C, Jukema G (2007) Maggot debridement therapy in necrotizing fasciitis reduces the number of surgical debridements. Wounds 19:73–78

    PubMed  Google Scholar 

  • Sukontason K, Piangjai S, Siriwattanarungsee S, Sukontason KL (2008) Morphology and developmental rate of blowflies Chrysomya megacephala and Chrysomya rufifacies in Thailand: application in forensic entomology. Parasitol Res 102:1207–1216

    Article  PubMed  Google Scholar 

  • Sukontason KL, Bunchu N, Chaiwong T, Kuntalue B, Sukontason K (2007) Fine structure of the eggshell of the blow fly, Lucilia cuprina. J Insect Sci 7:9. doi:10.1673/031.007.0901

    Article  PubMed  PubMed Central  Google Scholar 

  • Suwannee E, Sathirakorn P, Chanapong R (2010) Comparison of curing costs between maggot and conventional therapies for chronic wound care. J Health Res 24:21–25

  • Tantawi TI, Gohar YM, Kotb MM, Beshara FM, El-Naggar MM (2007) Clinical and microbiological efficacy of MDT in the treatment of diabetic foot ulcers. J Wound Care 16:379–383

    Article  CAS  PubMed  Google Scholar 

  • Tantawi TI, Williams KA, Villet MH (2010) An accidental but safe and effective use of Lucilia cuprina (Diptera: Calliphoridae) in maggot debridement therapy in Alexandria, Egypt. J Med Entomol 47:491–494

    Article  PubMed  Google Scholar 

  • Teich S, Myers RA (1986) Maggot therapy for severe skin infections. South Med J 79:1153–1155

    Article  CAS  PubMed  Google Scholar 

  • Thomas S, Jones M, Shutler S, Jones S (1996) Using larvae in modern wound management. J Wound Care 5:60–69

    Article  CAS  PubMed  Google Scholar 

  • Thyssen P, Nassu M, Nitsche M, Leite D (2013) Sterilization of immature blowflies (Calliphoridae) for use in larval therapy. J Med Med Sci 4:405–409

  • Tumrasvin W, Kurahashi H, Kano R (1979) Studies on medically important flies in Thailand VII. Report on 42 species of calliphorid flies, including the taxonomic keys (Diptera: Calliphoridae). Bull Tokyo Med Dent Univ 26:243–272

    CAS  PubMed  Google Scholar 

  • Wayman J, Nirojogi V, Walker A, Sowinski A, Walker MA (2000) The cost effectiveness of larval therapy in venous ulcers. J Tissue Viability 10:91–94

    Article  CAS  PubMed  Google Scholar 

  • Wilasrusmee C, Marjareonrungrung M, Eamkong S, Attia J, Poprom N, Jirasisrithum S, Thakkinstian A (2014) Maggot therapy for chronic ulcer: a retrospective cohort and a meta-analysis. Asian J Surg 37:138–147

    Article  PubMed  Google Scholar 

  • Williams KL, Nurmi S (1974) Developmental and biochemical characteristics of sterile cultures of the blowfly Lucilia cuprina. Lab Anim 8:177–187

    Article  CAS  PubMed  Google Scholar 

  • Wolff H, Hansson C (2005) Rearing larvae of Lucilia sericata for chronic ulcer treatment—an improved method. Acta Derm Venereol 85:126–131

    Article  PubMed  Google Scholar 

  • Yeong YS, Nazni WA, Santana RL, Mohd Noor I, Lee HL, Mohd Sofian A (2011) Scanning electron microscopic evaluation of the successful sterilization of Lucilia cuprina (Wiedemann) utilized in maggot debridement therapy (mdt). Trop Biomed 28:325–332

    CAS  PubMed  Google Scholar 

  • Zamora JL (1986) Chemical and microbiologic characteristics and toxicity of povidone-iodine solutions. Am J Surg 151:400–406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Royal Golden Jubilee Ph.D. Program (PHD/0361/2552 to K. Sukontason and K. Limsopatham) and in part by the Chiang Mai University (CMU) through the research administration office which provided the budget to our Excellence Center in Insect Vector Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kom Sukontason.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limsopatham, K., Khamnoi, P., Sukontason, K.L. et al. Sterilization of blow fly eggs, Chrysomya megacephala and Lucilia cuprina, (Diptera: Calliphoridae) for maggot debridement therapy application. Parasitol Res 116, 1581–1589 (2017). https://doi.org/10.1007/s00436-017-5435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5435-9

Keywords

Navigation