Skip to main content
Log in

Analysis of the effect of soil saprophytic fungi on the eggs of Baylisascaris procyonis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Baylisascaris procyonis is a soil-transmitted helminth mainly found in raccoons (Procyon lotor) which can also affect other domestic and sylvatic animals, as well as humans, when the eggs released in the feces of parasitized raccoons are accidentally ingested. Three assays have been conducted to assess the effect of three saprophytic fungi, Mucor circinelloides, Paecilomyces lilacinus, and Verticillium sp., on the eggs of B. procyonis. Firstly, their ovicidal effect was in vitro ascertained by placing 1 mL with 2 × 106 spores of each fungus in Petri plates with water-agar (2 %) and simultaneously adding 200 eggs of Baylisascaris/plate. Two in vivo probes were carried out, by spraying the fungal spores (3 mL containing about 2 × 106 spores/mL) on the feces of raccoons and coatis (Nasua narica) passing eggs of B. procyonis in a zoological park; the other assay consisted of evaluating the activity of the fungi after adding sand to fecal samples from raccoons. An ovicidal type 3 activity characterized by morphological damage of the eggshell with hyphal penetration, internal egg colonization, and embryo alteration was observed for all the tested fungi. In the plate assays, viability of Baylisascaris eggs reduced significantly by 53–69 % with Mucor, 45–62 % with Paecilomyces, and 52–67 % with Verticillium. A similar ovicidal effect was detected in the feces with sand. These results demonstrate the usefulness of spraying spores of M. circinelloides, Pa. lilacinus, or Verticillium sp. on the feces of animals infected by Baylisascaris to decrease the numbers of viable eggs and, thus, the risk of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arias MS, Cazapal-Monteiro CF, Suárez J, Miguélez S, Francisco I, Arroyo FL, Suárez JL, Paz-Silva A, Sánchez-Andrade R, Mendoza de Gives P (2013) Mixed production of filamentous fungal spores for preventing soil-transmitted helminth zoonoses: a preliminary analysis. Biomed Res Int. doi:10.1155/2013/567876

    Google Scholar 

  • Blaszkowska J, Wojcik A, Kurnatowski P, Szwabe K (2013) Biological interactions between soil saprotrophic fungi and Ascaris suum eggs. Vet Parasitol 196:401–408

    Article  PubMed  Google Scholar 

  • Blizzard EL (2010) Distribution, prevalence, and genetic characterization of Baylisascaris procyonis in selected areas of Georgia and Florida. MSc thesis, University of Georgia, pp 77.

  • Braga FR, Araújo JV, Carvalho RO, Silva AR, Araujo JM, Soares FE, Geniêr HL, Ferreira SR, Queiroz JH (2010) Predatory activity of Pochonia chlamydosporia fungus on Toxocara (syn. Neoascaris) vitulorum eggs. Trop Anim Health Prod 42:309–314

    Article  PubMed  Google Scholar 

  • Braga FR, Araújo JV, Araujo JM, Frassy LN, Tavela AO, Soares FE, Carvalho RO, Queiroz LM, Queiroz JH (2012) Pochonia chlamydosporia fungal activity in a solid medium and its crude extract against eggs of Ascaridia galli. J Helminthol 86:348–352

  • Carvalho RO, Araújo JV, Braga FR, Araujo JM, Alves CD (2010) Ovicidal activity of Pochonia chlamydosporia and Paecilomyces lilacinus on Toxocara canis eggs. Vet Parasitol 169:123–127

    Article  CAS  PubMed  Google Scholar 

  • Ciarmela ML, Minvielle MC, Lori G, Basualdo JA (2002) Biological interaction between soil fungi and Toxocara canis eggs. Vet Parasitol 103:251–257

    Article  CAS  PubMed  Google Scholar 

  • Cruz LM, Allanson M, Kwa B, Azizan A, Izurieta R (2012) Morphological changes of Ascaris spp. eggs during their development outside the host. J Parasitol 98:63–68

  • De Hoog GS, Guarro J, Gene E, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • De Souza Maia Filho F, Nunes Vieira J, Aires Berne ME, Stoll FE, Da Silva NP, Pötter L, Brayer Pereira DI (2013) Fungal ovicidal activity on Toxocara canis eggs. Rev Iberoam Micol 30:226–230

    Article  PubMed  Google Scholar 

  • Evans RH (2002) Baylisascaris procyonis (Nematoda: Ascarididae) larva migrans in free-ranging wildlife in Orange County, California. J Parasitol 88:299–301

    Article  PubMed  Google Scholar 

  • Ferreira SR, Araújo JV, Braga FR, Araujo JM, Carvalho RO, Silva AR, Frassy LN, Freitas LG (2011) Ovicidal activity of seven Pochonia chlamydosporia fungal isolates on Ascaris suum eggs. Trop Anim Health Prod 43:639–642

    Article  PubMed  Google Scholar 

  • García JT, García FJ, Alda F, González JL, Aramburu MJ, Cortés Y et al (2011) Recent invasion and status of the raccoon (Procyon lotor) in Spain. Biol Invasions. doi:10.1007/s10530-011-0157-x

    Google Scholar 

  • Gavin PJ, Kazacos KR, Tan TQ, Brinkman WB, Byrd SE, Davis AT, Mets MB, Shulman ST (2002) Neural larva migrans caused by the raccoon roundworm Baylisascaris procyonis. Pediatr Infect Dis J 21:971–975

  • Gavin PJ, Shulman ST (2003) Raccoon roundworm (Baylisascaris procyonis). Pediatr Infect Dis J 22:651–652

    PubMed  Google Scholar 

  • Gavin PJ, Kazacos KR, Shulman ST (2005) Baylisascariasis. Clin Microbiol Rev 18:703–718

    Article  PubMed Central  PubMed  Google Scholar 

  • Kazacos KR (2001) Baylisascaris procyonis and related species. In: Samuel WM, Pybus MJ, Kocan KK (eds) Parasitic diseases of wild mammals. Iowa State University Press, Ames, p 559

    Google Scholar 

  • Kazacos KR, Boyce WM (1989) Baylisascaris larva migrans. J Am Vet Med Assoc 195:894–903

    CAS  PubMed  Google Scholar 

  • LoGiudice K (2001) Latrine foraging strategies of two small mammals: implications for the transmission of Baylisascaris procyonis. Am Midl Nat 146:369–378

    Article  Google Scholar 

  • López-Llorca LV, Maciá-Vicente JG, Jansson H-B (2007) Nematophagous fungi: mode of action and interactions. In: Ciancio A, Mukerji KG (eds) General concepts in integrated pest and disease management. Springer, Netherlands, pp 43–59

    Google Scholar 

  • Lýsek H, Fassatiová O, Cuervo Pineda N, Lorenzo Hernández N (1982) Ovicidal fungi in soils of Cuba. Folia Parasitol 29:265–270

    PubMed  Google Scholar 

  • Maya C, Ortiz M, Jiménez B (2010) Viability of Ascaris and other helminth genera non larval eggs in different conditions of temperature, lime (pH) and humidity. Water Sci Technol 62:2616–2624

    Article  CAS  PubMed  Google Scholar 

  • Mazurkiewicz-Zapałowicz K, Jaborowska-Jarmoluk M, Kołodziejczyk L, Kuźna-Grygiel W (2014) Comparison of the effect of the chosen species of saprotrophic fungi on the development of Toxocara canis and Ascaris suum eggs. Ann Parasitol 60:215–220

    PubMed  Google Scholar 

  • Mitchell MA, Hungeford LL, Nixon C, Esker T, Sullivan J, Koerkenmeier R, Dubey JP (1999) Serologic survey for selected infectious disease agents in raccoons from Illinois. J Wildlife Dis 35:347–355

    Article  CAS  Google Scholar 

  • Monfort E, López-Llorca LV, Janson HB, Salinas J (2006) In vitro soil receptivity assays to egg-parasitic nematophagous fungi. Mycol Progress 5:18–23

    Article  Google Scholar 

  • Morrondo P, Díez-Morrondo C, Pedreira J, Díez-Baños N, Sánchez-Andrade R, Paz-Silva A, Díez-Baños P (2006) Toxocara canis larvae viability after disinfectant-exposition. Parasitol Res 99:558–561

    Article  CAS  PubMed  Google Scholar 

  • Murray WJ (2002) Human infections caused by the raccoon roundworm, Baylisascaris procyonis. Clin Microbiol News 24:1–7

    Article  Google Scholar 

  • Murray WJ, Kazacos KR (2004) Raccoon roundworm encephalitis. Clin Infect Dis 39:1484–1492

    Article  PubMed  Google Scholar 

  • Okulewicz A, Buńkowska K (2009) Baylisascariasis—a new dangerous zoonosis. Wiad Parazytol 55:329–334

    PubMed  Google Scholar 

  • Page LK, Gehrt SD, Titcombe KK, Robinson NP (2005) Measuring prevalence of raccoon roundworm (Baylisascaris procyonis): a comparison of common techniques. Wildl Soc Bull 33:1406–1412

    Article  Google Scholar 

  • Page LK, Anchor C, Luy E, Kron S, Larson G, Madsen L, Kellner K, Smyser TJ (2009) Backyard raccoon latrines and risk for Baylisascaris procyonis transmission to humans. Emerg Infect Dis 15:1530–1531

    Article  PubMed Central  PubMed  Google Scholar 

  • Page K, Beasley JC, Olson ZH, Smyser TJ, Downey M, Kellner KF, McCord SE, Egan TS 2nd, Rhodes OE Jr (2011) Reducing Baylisascaris procyonis roundworm larvae in raccoon latrines. Emerg Infect Dis 17:90–93

    Article  PubMed Central  PubMed  Google Scholar 

  • Page K, Smyser TJ, Dunkerton E, Gavard E, Larkin B, Gehrt S (2014) Reduction of Baylisascaris procyonis eggs in raccoon latrines, suburban Chicago, Illinois, USA. Emerg Infect Dis 20:2137–2140

    Article  PubMed Central  PubMed  Google Scholar 

  • Rentería-Solís ZM, Hamedy A, Michler FU, Michler BA, Lücker E, Stier N, Wibbelt G, Riehn K (2013) Alaria alata mesocercariae in raccoons (Procyon lotor) in Germany. Parasitol Res 112:3595–3600

    Article  PubMed  Google Scholar 

  • Roussere GP, Murray WJ, Raudenbush CB, Kutilek MJ, Levee DJ, Kazacos KR (2003) Raccoon roundworm eggs near homes and risk for larva migrans disease, California communities. Emerg Infect Dis 9:1516–1522

    Article  PubMed Central  PubMed  Google Scholar 

  • Sato H, Kamiya H, Furuoka H (2003) Epidemiological aspects of the first outbreak of Baylisascaris procyonis larva migrans in rabbits in Japan. J Vet Med Sci 65:453–457

    Article  PubMed  Google Scholar 

  • Sato H, Une Y, Kawakami S, Saito E, Kamiya H, Akao N, Furuoka H (2005) Fatal Baylisascaris larva migrans in a colony of Japanese macaques kept by a safari-style zoo in Japan. J Parasitol 91:716–719

    Article  CAS  PubMed  Google Scholar 

  • Shafir SC, Wang W, Sorvillo FJ, Wise ME, Moore L, Sorvillo T, Eberhard ML (2007) Thermal death point of Baylisascaris procyonis eggs. Emerg Infect Dis 13:172–173

    Article  PubMed Central  PubMed  Google Scholar 

  • Shafir SC, Sorvillo FJ, Sorvillo T, Eberhard ML (2011) Viability of Baylisascaris procyonis eggs. Emerg Infect Dis 17:1293–1295

    Article  PubMed Central  PubMed  Google Scholar 

  • Sorvillo F, Ash LR, Berlin OGW, Yatabe J, Degiorgio C, Mores SA (2002) Baylisascaris procyonis: an emerging helminthic zoonosis. Emerg Infect Dis 8:355–359

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson AB, Glover GJ, Postey RC, Sexsmith JL, Hutchison TW, Kazacos KR (2008) Baylisascaris procyonis encephalitis in Patagonian conures (Cyanoliseus patagonus), crested screamers (Chauna torquata), and a western Canadian porcupine (Erethizon dorsatum epixanthus) in a Manitoba zoo. Can Vet J 49:885–888

    PubMed Central  PubMed  Google Scholar 

  • Thrusfield M (2007) Veterinary epidemiology, 3rd edn. Blackwell, Oxford

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Research Project AGL2012-34355 (Ministerio de Economía y Competitividad, Spain; FEDER) and complies with the current laws for Animal Health Research in Spain. Dr. Arias has received a fellowship from the “Parga Pondal” Research Program (XUGA, Spain). We thank Mrs. B. Valcárcel for preparing and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Paz-Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazapal-Monteiro, C.F., Hernández, J.A., Arroyo, F.L. et al. Analysis of the effect of soil saprophytic fungi on the eggs of Baylisascaris procyonis . Parasitol Res 114, 2443–2450 (2015). https://doi.org/10.1007/s00436-015-4440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4440-0

Keywords

Navigation