Skip to main content
Log in

Trypanocidal and cysteine protease inhibitory activity of isopentyl caffeate is not linked in Trypanosoma brucei

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Previously, it was reported that caffeic acid esters inhibit the growth of bloodstream forms of Trypanosoma brucei and the activity of its major lysosomal cathepsin l-like cysteine protease, TbCATL. However, whether this trypanocidal activity is due to inactivation of TbCATL has not so far been demonstrated. Caffeic acid isopentyl ester (isopentyl caffeate) displayed antitrypanosomal activity against T. brucei bloodstream forms with minimum inhibitory concentration (MIC) and 50 % growth inhibition (GI50) values of 1 and 0.31 μg/ml, respectively. The ester also inhibited the activity of purified TbCATL but with a 27-fold higher half maximal inhibitory concentration (IC50) value of 8.5 μg/ml compared to its GI50 value. In contrast to previous suggestion, isopentyl caffeate did not interact with the active site of TbCATL but inhibited the enzyme in a non-competitive way. In addition, the ester was ineffective in blocking the proteolysis in the lysosome of the parasite, which, however, is a hallmark for inhibitors whose trypanocidal action is through inactivation of TbCATL. These results suggest that the antitrypanosomal activity of isopentyl caffeate (and probably of other caffeic acid esters) cannot be attributed to inhibition of TbCATL. Nevertheless, caffeic acid esters are interesting compounds with promising antitrypanosomal activity. This is supported by a more than 100 times less sensitivity of human HL-60 cells to isopentyl caffeate indicating that the ester has a favourable selectivity profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An WF, Tolliday N (2010) Cell-based assays for high-throughput screening. Mol Biotechnol 45:180–186

    Article  CAS  PubMed  Google Scholar 

  • Baltz T, Baltz D, Giroud C, Crockett J (1985) Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J 4:1273–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt RB, Laux JE, Yates SW (1987) Calculation of inhibitor K i and inhibitor type from the concentration of inhibitor for 50 % inhibition for Michaelis-Menton enzymes. Biochem Med Metab Biol 37:344–349

    Article  CAS  PubMed  Google Scholar 

  • Burke TR Jr, Fesen MR, Mazumder A, Wang J, Carothers AM, Grunberger D, Driscoll J, Kohn K, Pommier Y (1995) Hydroxylated aromatic inhibitors of HIV-1 integrase. J Med Chem 38:4171–4178

    Article  CAS  PubMed  Google Scholar 

  • Caffrey CR, Scory S, Steverding D (2000) Cysteine proteinases of trypanosome parasites: novel targets for chemotherapy. Curr Drug Targets 1:155–162

    Article  CAS  PubMed  Google Scholar 

  • Collins SJ, Gallo RC, Gallagher RE (1977) Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 270:347–349

    Article  CAS  PubMed  Google Scholar 

  • Delespaux V, de Koning HP (2007) Drugs and drug resistance in African trypanosomiasis. Drug Resist Updat 10:30–50

    Article  CAS  PubMed  Google Scholar 

  • Fairlamb AH (2003) Chemotherapy of human African trypanosomiasis: current and future prospects. Trends Parasitol 19:488–494

    Article  CAS  PubMed  Google Scholar 

  • Grab DJ, Wells CW, Shaw MK, Webster P, Russo DC (1992) Endocytosed transferrin in African trypanosomes is delivered to lysosomes and may not be recycled. Eur J Cell Biol 59:398–404

    CAS  PubMed  Google Scholar 

  • Hirumi H, Hirumi K, Doyle JJ, Cross GAM (1980) In vitro cloning of animal-infective bloodstream forms of Trypanosoma brucei. Parasitology 80:371–382

    Article  CAS  PubMed  Google Scholar 

  • Huber W, Koella JC (1993) A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop 55:257–261

    Article  CAS  PubMed  Google Scholar 

  • Lecaille F, Kaleta J, Brömme D (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102:4459–4488

    Article  CAS  PubMed  Google Scholar 

  • Matovu E, Seebeck T, Enyaru JC, Kaminsky R (2001) Drug resistance in Trypanosoma brucei ssp., the causative agents of sleeping sickness in man and nagana in cattle. Microbes Infect 3:763–770

    Article  CAS  PubMed  Google Scholar 

  • Merschjohann K, Sporer F, Steverding D, Wink M (2001) In vitro effect of alkaloids on bloodstream forms of Trypanosoma brucei and T. congolense. Planta Med 67:623–627

    Article  CAS  PubMed  Google Scholar 

  • Molyneux DH, Pentreath V, Doua F (1996) African trypanosomiasis in man. In: Cook GC (ed) Manson’s tropical diseases, 20th edn. Saunders, London, pp 1171–1196

    Google Scholar 

  • Moore GE, Gerner RE, Franklin HA (1967) Culture of normal human leukocytes. J Am Med Assoc 199:519–524

    Article  CAS  Google Scholar 

  • Nkemgu NJ, Grande R, Hansell E, McKerrow JH, Caffrey CR, Steverding D (2003) Improved trypanocidal activities of cathepsin L inhibitors. Int J Antimicrob Agents 22:155–159

    Article  CAS  PubMed  Google Scholar 

  • Nwaka S, Hudson A (2006) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5:941–955

    Article  CAS  PubMed  Google Scholar 

  • Ogungbe IV, Crouch RA, Haber WA, Setzer WN (2010) Phytochemical investigation of Verbesina turbacensis Kunth: trypanosome cysteine protease inhibition by (-)-bornyl esters. Nat Prod Commun 5:1161–1166

    CAS  PubMed  Google Scholar 

  • Otoguro K, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Kiyohara H, Hashimoto T, Asakawa Y, Omura S, Yamada H (2012) In vitro antitrypanosomal activity of some phenolic compounds from propolis and lactones from Fijian Kawa (Piper methysticum). J Nat Med 66:558–561

    Article  CAS  PubMed  Google Scholar 

  • Otto HH, Schirmeister T (1997) Cysteine proteases and their inhibitors. Chem Rev 97:133–172

    Article  CAS  PubMed  Google Scholar 

  • Sanderson JT, Clabault H, Patton C, Lassalle-Claux G, Jean-François J, Paré AF, Hébert MJG, Surette ME, Touaibia M (2013) Antiproliferative, antiandrogenic and cytotoxic effects of novel caffeic acid derivatives in LNCaP human androgen-dependent prostate cancer cells. Bioorg Med Chem 21:7182–7193

    Article  CAS  PubMed  Google Scholar 

  • Scory S, Caffrey CR, Stierhof YD, Ruppel A, Steverding D (1999) Trypanosoma brucei: killing of bloodstream forms in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN2. Exp Parasitol 91:327–333

    Article  CAS  PubMed  Google Scholar 

  • Steverding D, Stierhof YD, Fuchs H, Tauber R, Overath P (1995) Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei. J Cell Biol 131:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Steverding D, Caffrey CR, Said M (2006) Cysteine proteinase inhibitors as therapy for parasitic diseases: advances in inhibitor design. Mini Rev Med Chem 6:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Steverding D, Sexton DW, Wang X, Gehrke SS, Wagner GK, Caffrey CR (2012a) Trypanosoma brucei: chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int J Parasitol 42:481–488

    Article  CAS  PubMed  Google Scholar 

  • Steverding D, Sexton DW, Chrysochoidi N, Cao F (2012b) Trypanosoma brucei transferrin receptor can bind C-lobe and N-lobe fragments of transferrin. Mol Biochem Parasitol 185:99–105

    Article  CAS  PubMed  Google Scholar 

  • Troeberg L, Morty RE, Pike RN, Lonsdale-Eccles JD, Palmer JT, McKerrow JH, Coetzer TH (1999) Cysteine proteinase inhibitors kill cultured bloodstream forms of Trypanosoma brucei brucei. Exp Parasitol 91:349–355

    Article  CAS  PubMed  Google Scholar 

  • Vafiadi C, Topakas E, Wong KKY, Suckling ID, Christakopoulos P (2005) Mapping the hydrolytic and synthetic selectivity of a type C feruloyl esterase (StFaeC) from Sporotrichum thermophile using alkyl ferulates. Tetrahedron Asymmetry 16:373–379

    Article  CAS  Google Scholar 

  • Vicik R, Hoerr V, Glaser M, Schultheis M, Hansell E, McKerrow JH, Holzgrabe U, Caffrey CR, Ponte-Sucre A, Moll H, Stich A, Schirmeister T (2006) Aziridine-2,3-dicarboxylate inhibitors targeting the major cysteine protease of Trypanosoma brucei as lead trypanocidal agents. Bioorg Med Chem Lett 16:2753–2757

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2005) Control of human African trypanosomiasis: a strategy for the African region. AFRO (AFR/RC55/11), http://www.who.int/trypanosomiasis_african/resources/afro_tryps_strategy.pdf. Accessed 10 Jun 2016

    Google Scholar 

  • World Health Organization (2016) African trypanosomiasis (sleeping sickness). World Health Org Fact Sheet 259, http://www.who.int/mediacentre/factsheets/fs259/en/. Accessed 10 Jun 2016

Download references

Acknowledgment

We thank Professor Conor R. Caffrey (Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego) for providing rhodesain (TbCATL). This study received financial support from CNPq (Brazilian National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Steverding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steverding, D., da Nóbrega, F.R., Rushworth, S.A. et al. Trypanocidal and cysteine protease inhibitory activity of isopentyl caffeate is not linked in Trypanosoma brucei . Parasitol Res 115, 4397–4403 (2016). https://doi.org/10.1007/s00436-016-5227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5227-7

Keywords

Navigation