Skip to main content

Advertisement

Log in

Differentiation of Trypanosoma cruzi I (TcI) and T. cruzi II (TcII) genotypes using genes encoding serine carboxypeptidases

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The parasite Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) can be classified based on biochemical and molecular markers, into six lineages or discrete typing units (DTUs), T. cruzi I–VI (TcI–VI), from which TcI and TcII are the parental genotypes. Trying to understand the dispersion of the subpopulations of T. cruzi in nature and its complex transmission cycles, the serine carboxypeptidase genes of T. cruzi were used as a molecular marker in the present study. DTUs of 25 T. cruzi isolates derived from different hosts and from different regions of Brazil were classified. Using specific primers, the complete serine carboxypeptidase open reading frame of 1401 bp was sequenced. The obtained data shows significant differences in the sequences of TcI and TcII. The analysis of the T. cruzi significantly different serine carboxypeptidase genes allowed distinguishing between the parental DTUs TcI to TcII and the hybrid DTU TcVI which grouped within the latter branch. The sequence diversity within the T. cruzi subpopulations was rather low. The analysis using the genes encoding proteases seems to be an interesting approach for the reconstruction of the origin and genotype evolution of T. cruzi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Andrade LO, Andrews NW (2005) The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat Rev Microbiol 3:819–823

    Article  CAS  PubMed  Google Scholar 

  • Andrade LO, Galvão LM, Meirelles Mde N, Chiari E, Pena SD, Macedo AM (2010) Differential tissue tropism of Trypanosoma cruzi strains: an in vitro study. Mem Inst Oswaldo Cruz 105:834–837

    PubMed  Google Scholar 

  • Araújo CAC, Mello CB, Jansen AM (2002) Trypanosoma cruzi I and Trypanosoma cruzi II: recognition of sugar structures by Arachis hypogaea (peanut agglutinin) lectin. J Parasitol 88:582–586

    Article  PubMed  Google Scholar 

  • Araújo CAC, Cabello PH, Jansen AM (2007) Growth behaviour of two Trypanosoma cruzi strains in single and mixed infections: in vitro and in the intestinal tract of the blood-sucking bug, Triatoma brasiliensis. Acta Trop 101:225–231

    Article  PubMed  Google Scholar 

  • Araújo CAC, Waniek PJ, Jansen AM (2008) Development of Trypanosoma cruzi (TcI) isolate in the digestive tract of an unfamiliar vector, Triatoma brasiliensis (Hemiptera, Reduviidae). Acta Trop 107:195–199

    Article  PubMed  Google Scholar 

  • Araújo CAC, Waniek PJ, Jansen AM (2009) An overview of Chagas disease and the role of triatomines on its distribution in Brazil. Vector Borne Zoonotic Dis 9:227–234

    Article  PubMed  Google Scholar 

  • Araújo CAC, Waniek PJ, Xavier SCC, Jansen AM (2011) Genotype variation of Trypanosoma cruzi isolates from different Brazilian biomes. Exp Parasitol 127:308–312

    Article  PubMed  Google Scholar 

  • Araújo CAC, Waniek PJ, Jansen AM (2014) TcI/TcII co-infection can enhance Trypanosoma cruzi growth in Rhodnius prolixus. Parasit Vectors 7:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnabe C, Brisse S, Tibayrenc M (2003) Phylogenetic diversity of bat trypanosomes of subgenus Schizotrypanum based on multilocus enzyme electrophoresis, random amplified polymorphic DNA, and cytochrome b nucleotide sequence analyses. Infect Genet Evol 2:201–208

    Article  CAS  PubMed  Google Scholar 

  • Bonaldo MC, D’Escoffier NL, Sales JM, Goldenberg S (1991) Characterization and expression of proteases during Trypanosoma cruzi metacyclogenesis. Exp Parasitol 73:44–51

    Article  CAS  PubMed  Google Scholar 

  • Bontempi E, Cazzulo JJ (1990) Digestion of human immunoglobulin G by the major cysteine proteinase cruzipain from Trypanosoma cruzi. FEMS Microbiol 70:337–342

    CAS  Google Scholar 

  • Bosseno M-F, García LS, Baunaure F, Gastelúm EM, Gutierrez MS, Kasten FL, Dumonteil E, Brenière SF (2006) Identification in triatomine vectors of feeding sources and Trypanosoma cruzi variants by heteroduplex assay and a multiplex miniexon polymerase chain reaction. Am J Trop Med Hyg 74:303–305

    CAS  PubMed  Google Scholar 

  • Breddam K (1986) Serine carboxypeptidase. Rev Carlsberg Res Commun 51:83–128

    Article  CAS  Google Scholar 

  • Briones MRS, Souto RP, Stolf BS, Zingales B (1999) The evolution of two Trypanosoma cruzi subgroups inferred from rRNA genes can be correlated with the interchange of American mammalian to pathogenicity and host specificity. Mol Biochem Parasitol 104:219–232

    Article  CAS  PubMed  Google Scholar 

  • Brisse S, Verhoef J, Tibayrenc M (2001) Characterization of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int J Parasitol 31:1218–1226

    Article  CAS  PubMed  Google Scholar 

  • Burleigh BA, Caler EV, Webster P, Andrews NW (1997) A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. J Cell Biol 136:609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzulo JJ, Couso R, Raimundi A, Hellman U (1989) Further characterization and partial amino acid sequence of a cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol 33:33–42

    Article  CAS  PubMed  Google Scholar 

  • Cazzulo JJ (2002) Proteinases of Trypanosoma cruzi: potential targets for the chemotherapy of Chagas disease. Curr Topics Med Chem 2:1257–1267

    Article  Google Scholar 

  • Chiari E, Camargo EP, Culture and cloning of Trypanosoma cruzi (1984) Genes and antigens of parasites. In: Morel CM (ed) A laboratory manual, Fundação Oswaldo Cruz. World Health Organization, Rio de Janeiro, pp 23–26

  • Cicarelli RMB, Lopes JD (1989) Characterisation of a protein from Trypanosoma cruzi trypomastigotes that cleaves non-immune IgG bound through its Fab fragment. J Immunol 142:1685–1690

    CAS  PubMed  Google Scholar 

  • Coura JR (2013) Chagas disease: control, elimination and eradication. Is it possible? Mem Inst Oswaldo Cruz 108:962–967

    Article  PubMed  PubMed Central  Google Scholar 

  • Coura JR, Viñas PA, Junqueira ACV (2014) Ecoepidemiology, short history and control of Chagas disease in the endemic countries and the new challenge for non-endemic countries. Mem Inst Oswaldo Cruz 109:856–862

    Article  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada DJ (2012) ModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duschak VG, Ciaccio M, Nasser JR, Basombrío MA (2001) Enzymatic activity, protein expression, and gene sequence of cruzipain in virulent and attenuated Trypanosoma cruzi strains. J Parasitol 87:1016–1022

    Article  CAS  PubMed  Google Scholar 

  • Dvorak JA, Hartman DL, Miles MA (1980) Trypanosoma cruzi: correlation of growth kinetics to zymodeme type in clones derived from various sources. J Protozool 27:472–474

    Article  Google Scholar 

  • El-Syaed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran A-N (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    Article  Google Scholar 

  • Fampa P, Lisboa CV, Zhaner V, Jansen AM, Ramirez MI (2010) Wide proteolytic activity survey reinforces heterogeneity among Trypanosoma cruzi TcI and TcII wild populations. Vector Borne Zoontic Dis 10:839–845

    Article  Google Scholar 

  • Freitas JM, Augusto-Pinto L, Pimenta JR, Bastos-Rodrigues L, Gonçalves VF, Teixeira SM, Chiari E, Junqueira AC, Fernandes O, Macedo AM, Machado CR, Pena SD (2006) Ancestral genomes, sex and the population structure of Trypanosoma cruzi. PLoS Pathog 2:e24

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia ES, Ratcliffe NA, Whitten MM, Gonzalez MS, Azambuja P (2007) Exploring the role of insect host factors in the dynamics of Trypanosoma cruziRhodnius prolixus interactions. J Insect Physiol 53:11–21

    Article  CAS  PubMed  Google Scholar 

  • Gaunt MW, Yeo M, Frame IA, Stothard JR (2003) Mechanism of genetic exchange in American trypanosomes. Nature 421:936–939

    Article  CAS  PubMed  Google Scholar 

  • Herrera L, Xavier SCC, Viegas C, Martinez C, Cotias PM, Carrasco H, Urdaneta-Morales S, Jansen AM (2004) Trypanosoma cruzi in a caviomorph rodent: parasitological and pathological features of the experimental infection of Trichomys apereoides (Rodentia, Echimyidae). Exp Parasitol 107:78–88

    Article  PubMed  Google Scholar 

  • Herrera L, D’Andrea PS, Xavier SCC, Mangia RH, Fernandes O, Jansen AM (2005) Trypanosoma cruzi infection in wild mammals of the National Park ‘Serra da Capivara’ and its surroundings (Piauí, Brazil), an area endemic for Chagas disease. Trans R Soc Trop Med Hyg 99:379–388

    Article  CAS  PubMed  Google Scholar 

  • Jurberg J, Galvão C, Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health (2006) Hug the bug. For love of true bugs. In: Rabitsch W (ed) Festschrift zum 70. Geburtstag von Ernst Heiss. Denisia 19, zugleich Kataloge der OÖ Landesmuseen 50, Linz, pp 1096–1116

    Google Scholar 

  • Lima AP, dos Reis FC, Serveau C, Lalmanach G, Juliano L, Ménard R, Vernet T, Thomas DY, Storer AC, Scharfstein J (2001) Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Mol Biochem Parasitol 114:41–52

    Article  CAS  PubMed  Google Scholar 

  • Lisboa CV, Pinho AP, Herrera HM, Gerhardt M, Cupolillo E, Jansen AM (2008) Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) genotypes in neotropical bats in Brazil. Vet Parasitol 156:314–318

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn MS, Lewis MD, Acosta N, Yeo M, Carrasco HJ, Segovia M, Vargas J, Torrico F, Miles MA, Gaunt MW (2009) Trypanosoma cruzi IIc: phylogenetic and phylogeographic insights from sequence and microsatellite analysis and potential impact on emergent Chagas disease. PLoS Negl Trop Dis 3:e510

    Article  PubMed  PubMed Central  Google Scholar 

  • Macedo AM, Pena SDJ (1998) Genetic variability of Trypanosoma cruzi: implications for the pathogenesis of Chagas disease. Parasitol Today 14:119–124

    Article  CAS  PubMed  Google Scholar 

  • Maia da Silva F, Marcili A, Lima L, Cavazzana JM, Ortiz PA, Campaner M, Takeda GF, Paiva F, Nunes VLB, Camargo EP, Teixeira MMG (2009) Trypanosoma rangeli isolates of bats from Central Brazil: genotyping and phylogenetic analysis enable description of a new lineage using spliced-leader gene sequences. Acta Trop 109:199–207

    Article  CAS  PubMed  Google Scholar 

  • Marin-Neto JA, Cunha-Neto EC, Maciel BC, Simões MV (2007) Pathogenesis of chronic Chagas heart disease. Circulation 115:1109–1123

    Article  PubMed  Google Scholar 

  • McKerrow JH (1988) The role of proteinases in the pathogenesis of parasitic diseases. In: Sand MA, Leech JH, Root RK (eds) Parasitic Infections, vol 7, Contemporary issues in infectious disease. Churchill Livingstone, London, pp 51–59

    Google Scholar 

  • Meirelles MNL, Juliano L, Carmona E, Silva SG, Costa EM, Murta ACM, Scharfstein J (1992) Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol Biochem Parasitol 52:175–184

    Article  CAS  PubMed  Google Scholar 

  • Mello CB, Azambuja P, Garcia ES, Ratcliffe NA (1996) Differential in vitro and in vivo behaviour of three strains of Trypanosoma cruzi in the gut and hemolymph of Rhodnius prolixus. Exp Parasitol 82:112–121

    Article  CAS  PubMed  Google Scholar 

  • Mortensen UH, Olesen K, Breddam K (1999) Carboxypeptidase C including carboxypeptidase Y. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic Press Inc., London, pp 389–393

    Google Scholar 

  • Murta ACM, Persechini PM, Souto-Padrón T, De Souza W, Guimarães JA, Scharfstein J (1990) Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol 43:27–38

    Article  CAS  PubMed  Google Scholar 

  • Parussini F, García M, Mucci J, Agüero F, Sánchez D, Hellman U, Åslund L, Cazzulo JJ (2003) Characterization of a lysosomal serine carboxypeptidase from Trypanosoma cruzi. Mol Biochem Parasitol 131:11–23

    Article  CAS  PubMed  Google Scholar 

  • Pedroso A, Cupolillo E, Zingales B (2003) Evaluation of Trypanosoma cruzi hybrid stocks based on chromosomal size variation. Mol Biochem Parasitol 129:79–90

    Article  CAS  PubMed  Google Scholar 

  • Pinho AP, Cupolillo E, Mangia RH, Fernandes O, Jansen AM (2000) Trypanosoma cruzi in the sylvatic environment: distinct transmission cycles involving two sympatric marsupials. Trans R Soc Trop Med Hyg 94:1–6

    Article  Google Scholar 

  • Prata A (2001) Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis 1:92–100

    Article  CAS  PubMed  Google Scholar 

  • Remington SJ, Breddam K (1994) Carboxypeptidase C and D. Meth Enzymol 244:231–248

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sturm NR, Campbell DA (2010) Alternative lifestyles: the population structure of Trypanosoma cruzi. Acta Trop 115:35–43

    Article  PubMed  Google Scholar 

  • Teichert U, Mechler B, Müller H, Wolf DH (1989) Lysosomal vacuolar proteinases of yeast are essential catalysts for protein degradation, differentiation and cell survival. J Biol Chem 264:16037–16045

    CAS  PubMed  Google Scholar 

  • Tomasini N, Diosque P (2015) Evolution of Trypanosoma cruzi: clarifying hybridisations, mitochondrial introgressions and phylogenetic relationships between major lineages. Mem Inst Oswaldo Cruz 110:403–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomazi L, Kawashita SY, Pereira PM, Zingales B, Briones MRS (2009) Haplotype distribution of five nuclear genes based on network genealogies and Bayesian inference indicates that Trypanosoma cruzi hybrid strains are polyphyletic. Gen Mol Res 8:458–476

    Article  CAS  Google Scholar 

  • Torres JP, Ortiz S, Munoz S, Solari A (2004) Trypanosoma cruzi isolates from Chile are heterogeneous and composed of mixed populations when characterized by schizodeme and Southern analyses. Parasitology 128:161–168

    Article  CAS  PubMed  Google Scholar 

  • Uehara LA, Moreira OC, Oliveira AC, Azambuja P, Lima AP, Britto C, dos Santos AL, Branquinha MH, d’Avila-Levy CM (2012) Cruzipain promotes Trypanosoma cruzi adhesion to Rhodnius prolixus midgut. PLoS Negl Trop Dis 6:e1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR (2014) Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 71:1245–1263

    Article  CAS  PubMed  Google Scholar 

  • Waniek PJ, Araújo CAC, Momoli MM, Azambuja P, Jansen AM, Genta FA (2014) Serine carboxypeptidases of Triatoma brasiliensis (Hemiptera, Reduviidae): sequence characterization, expression pattern and activity localization. J Insect Physiol 63:9–20

    Article  CAS  PubMed  Google Scholar 

  • Westenberger SJ, Barnabé C, Campbell DA, Sturm NR (2005) Two hybridization events define the population structure of Trypanosoma cruzi. Genetics 171:527–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo M, Acosta N, Llewellyn M, Sánchez H, Adamson S, Miles GAJ, López E, González N, Patterson JM, Gaunt MW, Arias RJ, Miles MA (2005) Origins of Chagas disease: Didelphis are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 35:225–233

    Article  CAS  PubMed  Google Scholar 

  • Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104:1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MMG, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Gen Evol 12:240–253

    Article  Google Scholar 

  • Zingales B, Miles MA, Moraes CB, Luquetti A, Guhl F, Schijman AG, Ribeiro I (2014) Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz 109:828–833

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Octavio Fernandes and Dr. Adeílton Brandão (Laboratório Interdisciplinar de Pesquisas Médicas—IOC/FIOCRUZ) for the technical support. The present study received financial support from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ (Cientistas do Nosso Estado: E-26/100.456/2007 and Research Fellow: E-26/152.913/2005) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Edital Universal: 472276/2006-9). All material has been collected before Oct. 12, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Andréa Chaves de Araújo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental figure 1

Bayesian phylogenetic tree of the full data set using the GTR+I+G model. The same tree but with collapsed outgroup is shown in Fig. 1. The respective genotypes are shown after the name of the isolates. Isolates without genotype are T. c. marinkellei. (PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, C.A.C., Mayer, C., Waniek, P.J. et al. Differentiation of Trypanosoma cruzi I (TcI) and T. cruzi II (TcII) genotypes using genes encoding serine carboxypeptidases. Parasitol Res 115, 4211–4219 (2016). https://doi.org/10.1007/s00436-016-5198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5198-8

Keywords

Navigation