Skip to main content

Advertisement

Log in

Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for equipment-free detection of Cryptosporidium spp. oocysts in dairy cattle feces

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Cryptosporidium is a widespread protozoan parasite that infects a large number of vertebrate animals, resulting in varying degrees of diarrhea or even death. As dairy cattle feces is an important source of Cryptosporidium spp. infection, development of a handy and accurate detection method via its oocysts in dairy cattle feces would be interesting and necessary. We herein developed a quick detecting method using recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip to detect DNA of Cryptosporidium oocysts in dairy cattle feces. The DNA was released by boiled water with 0.1 % N-lauroylsarcosine sodium salt (LSS). The established method was proven to be of higher sensitivity than normal polymerase chain reaction (PCR) amplification with the lowest detection of 0.5 oocyst per reaction, and specificity with no cross reactivity to other common protozoan species in the intestine of dairy cattle. The diagnostic method established herein is simple, rapid, and cost-effective, and has potential for further development as a diagnostic kit for the diagnosis of cryptosporidiosis of dairy cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bushen OY, Kohli A, Pinkerton RC, Dupnik K, Newman RD, Sears CL, Fayer R, Lima AA, Guerrant RL (2007) Heavy cryptosporidial infections in children in northeast Brazil: comparison of Cryptosporidium hominis and Cryptosporidium parvum. Trans R Soc Trop Med Hyg 101:378–384

    Article  PubMed  Google Scholar 

  • Checkley W, White AC Jr, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA Jr, Priest JW, Roos DS, Striepen B, Thompson RC, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER (2015) A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect Dis 15:85–94

    Article  PubMed  Google Scholar 

  • Crannell ZA, Castellanos-Gonzalez A, Irani A, Rohrman B, White AC, Richards-Kortum R (2014a) Nucleic acid test to diagnose cryptosporidiosis: lab assessment in animal and patient specimens. Anal Chem 86:2565–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crannell ZA, Rohrman B, Richards-Kortum R (2014b) Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS ONE 9, e112146

    Article  PubMed  PubMed Central  Google Scholar 

  • Daher RK, Stewart G, Boissinot M, Boudreau DK, Bergeron MG (2015) Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology. Mol Cell Probes 29:116–121

    Article  CAS  PubMed  Google Scholar 

  • del Río JS, Adly NY, Acero-Sánchez JL, Henry OY, O’Sullivan CK (2014) Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification. Biosens Bioelectron 54:674–678

    Article  PubMed  Google Scholar 

  • Fayer R (2010) Taxonomy and species delimitation in Cryptosporidium. Exp Parasitol 124:90–97

    Article  PubMed  Google Scholar 

  • Fayer R, Gasbarre L, Pasquali P, Canals A, Almeria S, Zarlenga D (1998) Cryptosporidium parvum infection in bovine neonates: dynamic clinical, parasitic and immunologic patterns. Int J Parasitol 28:49–56

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Zhang M, Amer S, Luo J, Wang C, Wu S, Zhao B, He H (2014) Development of an immunomagnetic bead separation-coupled quantitative PCR method for rapid and sensitive detection of Cryptosporidium parvum oocysts in calf feces. Parasitol Res 113:2069–2077

    Article  PubMed  Google Scholar 

  • Hawash Y (2014) DNA extraction from protozoan oocysts/cysts in feces for diagnostic PCR. Korean J Parasitol 52:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins JA, Jenkins MC, Shelton DR, Fayer R, Karns JS (2001) Rapid extraction of DNA from Escherichia coli and Cryptosporidium parvum for use in PCR. Appl Environ Microbiol 67:5321–5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter PR, Nichols G (2002) Epidemiology and clinical features of Cryptosporidium infection in immunocompromised patients. Clin Microbiol Rev 15:145–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Karanis P, Thekisoe O, Kiouptsi K, Ongerth J, Igarashi I, Inoue N (2007) Development and preliminary evaluation of a loop-mediated isothermal amplification procedure for sensitive detection of Cryptosporidium oocysts in fecal and water samples. Appl Environ Microbiol 73:5660–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Li P, Zhao X, Xu H, Wu W, Wang Y, Guo Y, Wang L, Feng Y, Xiao L (2015) Occurrence and molecular characterization of Cryptosporidium spp. and Enterocytozoon bieneusi in dairy cattle, beef cattle and water buffaloes in China. Vet Parasitol 207:220–227

    Article  PubMed  Google Scholar 

  • Mary C, Chapey E, Dutoit E, Guyot K, Hasseine L, Jeddi F, Menotti J, Paraud C, Pomares C, Rabodonirina M, Rieux A, Derouin F (2013) Multicentric evaluation of a new real-time PCR assay for quantification of Cryptosporidium spp. and identification of Cryptosporidium parvum and Cryptosporidium hominis. J Clin Microbiol 51:2556–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin SJ, Kalita PK, Kuhlenschmidt MS (2013) Fate of Cryptosporidium parvum oocysts within soil, water, and plant environment. J Environ Manage 131:121–128

    Article  PubMed  Google Scholar 

  • Mirhashemi ME, Zintl A, Grant T, Lucy FE, Mulcahy G, De Waal T (2015) Comparison of diagnostic techniques for the detection of Cryptosporidium oocysts in animal samples. Exp Parasitol 151:14–20

    Article  Google Scholar 

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4, e204

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosser A, Rollinson D, Forrest M, Webster BL (2015) Isothermal recombinase polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasit Vectors 8:1–5

    Article  Google Scholar 

  • Sadaka HA, Gaafar MR, Mady RF, Hezema NN (2015) Evaluation of ImmunoCard STAT test and ELISA versus light microscopy in diagnosis of giardiasis and cryptosporidiosis. Parasitol Res 114:2853–2863

    Article  CAS  PubMed  Google Scholar 

  • Sekikawa T, Kawasaki Y, Katayama Y, Iwahori K (2011) A simple method for extracting DNA from Cryptosporidium oocysts using the anionic surfactant LSS. New Biotechnol 29:139–143

    Article  CAS  Google Scholar 

  • Shields JM, Joo J, Kim R, Murphy HR (2013) Assessment of three commercial DNA extraction kits and a laboratory-developed method for detecting Cryptosporidium and Cyclospora in raspberry wash, basil wash and pesto. J Microbiol Methods 92:51–58

    Article  CAS  PubMed  Google Scholar 

  • Šlapeta J (2013) Cryptosporidiosis and Cryptosporidium species in animals and humans: a thirty colour rainbow? Int J Parasitol 43:957–970

    Article  PubMed  Google Scholar 

  • Sparks H, Nair G, Castellanos-Gonzalez A, White AC Jr (2015) Treatment of Cryptosporidium: what we know, gaps, and the way forward. Curr Trop Med Rep 2:181–187

    Article  PubMed  Google Scholar 

  • Van den Bossche D, Cnops L, Verschueren J, Van Esbroeck M (2015) Comparison of four rapid diagnostic tests, ELISA, microscopy and PCR for the detection of Giardia lamblia, Cryptosporidium spp. and Entamoeba histolytica in feces. J Microbiol Methods 110:78–84

    Article  PubMed  Google Scholar 

  • Verbyla ME, Oakley SM, Mihelcic JR (2013) Wastewater infrastructure for small cities in an urbanizing world: integrating protection of human health and the environment with resource recovery and food security. Environ Sci Technol 47:3598–3605

    Article  CAS  PubMed  Google Scholar 

  • Ward LA, Wang Y (2001) Rapid methods to isolate Cryptosporidium DNA from frozen feces for PCR. Diagn Microbiol Infect Dis 41:37–42

    Article  CAS  PubMed  Google Scholar 

  • Weber R, Bryan RT, Bishop HS, Wahlquist SP, Sullivan JJ, Juranek DD (1991) Threshold of detection of Cryptosporidium oocysts in human stool specimens: evidence for low sensitivity of current diagnostic methods. J Clin Microbiol 29:1323–1327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124:80–89

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Morgan UM, Limor J, Escalante A, Arrowood M, Shulaw W, Thompson RC, Fayer R, Lal AA (1999) Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Appl Environ Microbiol 65:3386–3391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XX, Tan QD, Zhou DH, Ni XT, Liu GX, Yang YC, Zhu XQ (2015) Prevalence and molecular characterization of Cryptosporidium spp. in dairy cattle, northwest China. Parasitol Res 114:2781–2787

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Project support was provided by the National Key Project of Scientific and Technical Supporting Program (Grant No. 2012BAD12B07), the Special Fund for Agro-scientific Research in the Public Interest (Grant No. 201303037), and the Science and Technology Support Program of Gansu Province (Grant No. 1504NKCA054-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Jun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YD., Zhou, DH., Zhang, LX. et al. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for equipment-free detection of Cryptosporidium spp. oocysts in dairy cattle feces. Parasitol Res 115, 3551–3555 (2016). https://doi.org/10.1007/s00436-016-5120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5120-4

Keyword

Navigation