Skip to main content
Log in

Determination of Ancylostoma caninum ova viability using metabolic profiling

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Differentiation between viable and non-viable hookworm ova in environmental samples is necessary in order to implement strategies to mitigate re-infections in endemic regions. In this study, an untargeted metabolic profiling method was developed that utilised gas chromatography-mass spectrometry (GC-MS) in order to investigate hookworm ova viability. Ancylostoma caninum was used to investigate the metabolites within viable and non-viable ova. Univariate and multivariate statistical analyses of the data resulted in the identification of 53 significant metabolites across all hookworm ova samples. The major compounds observed in viable and non-viable hookworm ova were tetradecanoic acid, commonly known as myristic acid [fold change (FC) = 0.4], and dodecanoic acid, commonly known as lauric acid (FC = 0.388). Additionally, the viable ova had self-protecting metabolites such as prostaglandins, a typical feature absent in non-viable ova. The results of this study demonstrate that metabolic profiling using GC-MS methods can be used to determine the viability of canine hookworm ova. Further studies are needed to assess the applicability of metabolic profiling using GC-MS to detect viable hookworm ova in the mixed (viable and non-viable) populations from environmental samples and identify the metabolites specific to human hookworm species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beale DJ, Dunn MS, Morrison PD, Porter NA, Marlow DR (2012) Characterisation of bulk water samples from copper pipes undergoing microbially influenced corrosion by diagnostic metabolomic profiling. Corros Sci 55:272–279

    Article  CAS  Google Scholar 

  • Beale DJ, Marney D, Marlow DR, Morrison PD, Dunn MS, Key C, Palombo EA (2013) Metabolomic analysis of Cryptosporidium parvum oocysts in water: a proof of concept demonstration. Environ Pollut 174:201–203

    Article  CAS  PubMed  Google Scholar 

  • Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367:1521–1532

    Article  PubMed  Google Scholar 

  • Bowman DD, Little MD, Reimers RS (2003) Precision and accuracy of an assay for detecting Ascaris eggs in various biosolid matrices. Water Res 37:2063–2072

    Article  CAS  PubMed  Google Scholar 

  • Durairaj RB (2005) Resorcinol: chemistry, technology and applications, Springer Science and Business Media

  • Fairfax KC, Vermeire JJ, Harrison LM, Bungiro RD, Grant W, Husain SZ, Cappello M (2009) Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum. Int J Parasitol 39:1561–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman MC, Clasen T, Brooker SJ, Akoko DO, Rheingans R (2013) The impact of a school-based hygiene, water quality and sanitation intervention on soil-transmitted helminth reinfection: a cluster-randomized trial. Am J Trop Med Hyg 89:875–883

    Article  PubMed  PubMed Central  Google Scholar 

  • Gyawali P, Ahmed W, Sidhu JPS, Jagals P, Toze S (2015a) Comparison of concentration methods for rapid detection of hookworm ova in wastewater matrices using quantitative PCR. Exp Parasitol 159:160–167

    Article  CAS  PubMed  Google Scholar 

  • Gyawali P, Sidhu JPS, Ahmed W, Jagals P, Toze S (2015b) Rapid concentration and sensitive detection of hookworm ova from wastewater matrices using a real-time PCR method. Exp Parasitol 159:5–12

    Article  CAS  PubMed  Google Scholar 

  • Hotez PJ, Gurwith M (2011) Europe’s neglected infections of poverty. Int J Infect Dis 15:e611–e619

    Article  PubMed  Google Scholar 

  • Hotez PJ, Alvarado M, Basanez MG, Bolliger I, Bourne R, Boussinesq M, Brooker SJ, Brown AS, Buckle G, Budke CM, Carabin H, Coffeng LE, Fevre EM, Furst T, Halasa YA, Asrasaria R, Johns NE, Keiser J, King CH, Lozano R, Murdoch ME, O’hanlon S, Pion SD, Pullan RL, Ramaiah KD, Roberts T, Shepard DS, Smith JL, Stolk WA, Undurraga EA, Utzinger J, Wang M, Murray CJ, Naghavi M (2014) The Global Burden of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis 8:e2865

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia TW, Melville S, Utzinger J, King CH, Zhou XN (2012) Soil-transmitted helminth reinfection after drug treatment: a systematic review and meta-analysis. PLoS Negl Trop Dis 6:e1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karkashan A, Khallaf B, Morris J, Thurbon N, Rough D, Smith SR, Deighton M (2015) Comparison of methodologies for enumerating and detecting the viability of Ascaris eggs in sewage sludge by standard incubation-microscopy, the BacLight Live/Dead viability assay and other vital dyes. Water Res 68:533–544

    Article  CAS  PubMed  Google Scholar 

  • Knopp S, Steinmann P, Keiser J, Utzinger J (2012) Nematode infections: soil-transmitted helminths and Trichinella. Infect Dis Clin N Am 26:341–358

    Article  Google Scholar 

  • Kouremenos KA, Beale DJ, Antti H, Palombo EA (2014) Liquid chromatography time of flight mass spectrometry based environmental metabolomics for the analysis of Pseudomonas putida bacteria in potable water. J Chromatogr B Anal Technol Biomed Life Sci 966:179–186

    Article  CAS  Google Scholar 

  • Lammler G, Sahai BN, Herzog H (1969) Anthelmintic efficacy of 2, 6-dihydroxybenzoic acid-4′-bromanilide (Hoe 296 V) against mature and immature Paramphisto mum microbothrium in goats. Acta Vet Acad Sci Hung 19:447–451

    CAS  PubMed  Google Scholar 

  • Lier T, Do DT, Johansen MV, Nguyen TH, Dalsgaard A, Asfeldt AM (2014) High reinfection rate after preventive chemotherapy for fishborne zoonotic trematodes in Vietnam. PLoS Negl Trop Dis 8:e2958

    Article  PubMed  PubMed Central  Google Scholar 

  • Markov GV, Baskaran P, Sommer RJ (2014) The same or not the same: lineage-specific gene expansions and homology relationships in multigene families in nematodes. J Mol Evol 80:18–36

    Article  PubMed  Google Scholar 

  • McCarthy JS, Lustigman S, Yang GJ, Barakat RM, Garcia HH, Sripa B, Willingham AL, Prichard RK, Basanez MG (2012) A research agenda for helminth diseases of humans: diagnostics for control and elimination programmes. PLoS Negl Trop Dis 6:e1601

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng JS, Ryan U, Trengove RD, Maker GL (2012) Development of an untargeted metabolomics method for the analysis of human faecal samples using Cryptosporidium-infected samples. Mol Biochem Parasitol 185:145–150

    Article  CAS  PubMed  Google Scholar 

  • Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, Llinas M (2009) Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 5:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orhon D, Cokgor EU, Katipoglu T, Insel G, Karahan O (2010) Fate of 2,6-dihydroxybenzoic acid and its inhibitory impact on the biodegradation of peptone under aerobic conditions. Bioresour Technol 101:2665–2671

    Article  CAS  PubMed  Google Scholar 

  • Preidis GA, Hotez PJ (2015) The newest “omics” metagenomics and metabolomics-enter the battle against the neglected tropical diseases. PLoS Negl Trop Dis 9:e0003382

    Article  PubMed  PubMed Central  Google Scholar 

  • Song C, Chiasson MA, Nursimulu N, Hung SS, Wasmuth J, Grigg ME, Parkinson J (2013) Metabolic reconstruction identifies strain‐specific regulation of virulence in Toxoplasma gondii. Mol Syst Biol 9:e708

    Article  Google Scholar 

  • Timanova A, Muller S, Marti T, Bankov I, Walter RD (1999) Ascaridia galli fatty acid‐binding protein, a member of the nematode polyprotein allergens family. Eur J Biochem 261:569–576

    Article  CAS  PubMed  Google Scholar 

  • Traub RJ, Hobbs RP, Adams PJ, Behnke JM, Harris PD, Thompson RC (2007) A case of mistaken identity-reappraisal of the species of canid and felid hookworms (Ancylostoma) present in Australia and India. Parasitology 134:113–119

    Article  CAS  PubMed  Google Scholar 

  • Truscott JE, Hollingsworth TD, Brooker SJ, Anderson RM (2014) Can chemotherapy alone eliminate the transmission of soil transmitted helminths. Parasit Vectors 7:e266

    Article  Google Scholar 

  • Tyagi R, Rosa BA, Lewis WG, Mitreva M (2015) Pan-phylum comparison of nematode metabolic potential. PLoS Negl Trop Dis 9:e0003788

    Article  PubMed  PubMed Central  Google Scholar 

  • Vranova V, Lojkova L, Rejsek K, Formanek P (2013) Significance of the natural occurrence of L-versus D-pipecolic acid: a review. Chirality 25:823–831

  • WHO (2012) Soil-transmitted helminthiases: eliminating soil-transmitted helminthiases as a public health problem in children: progress report 2001–2010 and strategic plan 2011–2020

  • WHO (2015) Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases 2015. WHO Press, World Health Organization, Geneva

    Google Scholar 

  • Willger SD, Grahl N, Cramer RA Jr (2009) Aspergillus fumigatus metabolism: clues to mechanisms of in vivo fungal growth and virulence. Med Mycol 47:S72–S79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap P, Du ZW, Wu FW, Jiang JY, Chen R, Zhou XN, Hattendorf J, Utzinger J, Steinmann P (2013) Rapid re-infection with soil-transmitted helminths after triple-dose albendazole treatment of school-aged children in Yunnan, People’s Republic of China. Am J Trop Med Hyg 89:23–31

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate financial support from the Water Corporation, WA and Land and Water, Commonwealth Scientific and Industry Research Organisation (CSIRO). Thanks to Dr. Simon Toze for his guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gyawali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyawali, P., Beale, D.J., Ahmed, W. et al. Determination of Ancylostoma caninum ova viability using metabolic profiling. Parasitol Res 115, 3485–3492 (2016). https://doi.org/10.1007/s00436-016-5112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5112-4

Keywords

Navigation