Parasitology Research

, Volume 115, Issue 9, pp 3387–3400 | Cite as

Molecular and morphological description of Haemoproteus (Parahaemoproteus) bukaka (species nova), a haemosporidian associated with the strictly Australo-Papuan host subfamily Cracticinae

  • W. GouldingEmail author
  • R. D. Adlard
  • S. M. Clegg
  • N. J. Clark
Original Paper


Linking morphological studies with molecular phylogeny is important to understanding cryptic speciation and the evolution of host-parasite relationships. Haemosporidian parasites of the Australo-Papuan bird family Artamidae are relatively unstudied. Only one parasite species from the subfamily Cracticinae has been described, and this was based solely on morphological description. This is despite many Cracticinae species being easily observed and abundant over large ranges and in close proximity to human populations. We used morphological and molecular methods to describe a new Haemoproteus species (H. bukaka sp. nov.) from an endemic Butcherbird host (Cracticus louisiadensis) in a relatively unstudied insular area of high avian endemism (Papua New Guinea’s Louisiade Archipelago). Phylogenetic reconstructions using parasite cyt-b gene sequences placed the proposed Haemoproteus bukaka sp. nov. close to other host-specialist Haemoproteus species that infect meliphagid honeyeater hosts in the region, e.g. H. ptilotis. Distinct morphological characters of this haemosporidian include macrogametocytes with characteristic large vacuoles opposing a subterminal nucleus on the host cell envelope. Among 27 sampled individuals, prevalence of H. bukaka sp.nov. was high (74 % infection rate) but strongly variable across four islands in the archipelago (ranging from 0 to 100 % prevalence). Parasitaemia levels were low across all infected individuals (0.1–0.6 %). We suspect host density may play a role in maintaining high prevalence given the close proximity and similar physical environments across islands. The findings are discussed in the context of the host genus Cracticus and theory relating to parasite-host evolution and its conservation implications in Papua New Guinea.


Papua New Guinea Haemoproteus Parasites Endemic birds Islands Artamidae 



Financial support toward for the fieldwork was kindly provided by the Rufford Foundation, Club 300 bird protection fund and the UQ GPEM School Research Grant. We are grateful to the MalariaRCN for training; D. Gibson for advice; and Georgia Kaipu (NRI), Barnabas Willmott (DOE) and the PNG National Museum and Art Gallery for project sponsorship. Furthermore, we thank Kathryn Hall and Jessica Worthington-Wilmer of the Queensland Museum for allowing use of their laboratory facilities and offering valuable advice. We are also grateful to D. Mitchell (CI), numerous local landholders and communities in the Louisiade Archipelago for land access, support and advice. Research was conducted under UQ animal ethics permit GPEM/172/13/APA (WG), ABBBS 2519 (WG), PNG Department of Environment and Conservation approval WTE2. (WG), DAFF Import Permits (WG), PNG NRI Research Visa No. 10350017045 (WG) and Milne Bay Provincial Government permit (WG). Samples in Brisbane were collected under Department of Environment and Heritage Protection Queensland Government Scientific Purposes Permit No. WISP10823212 (SMC).


  1. Adlard RD, Peirce MA, Lederer R (2004) Blood parasites of birds from south-east Queensland. EMU 104:191–196CrossRefGoogle Scholar
  2. Applegate JE, Beaudoin RL (1970) Mechanism of spring relapse in avian malaria: effect of gonadotropin and corticosterone. J Wildl Dis 6:443–447CrossRefPubMedGoogle Scholar
  3. Atkinson CT (2008) Haemoproteus. In: Atkinson CT, Thomas NJ, Hunter DB (eds) Parasitic diseases of wild birds. Wiley-Blackwell, USA, pp 11–34CrossRefGoogle Scholar
  4. Atkinson CT, Thomas NJ, Hunter DB (2008) Parasitic diseases of wild birds. Wiley-Blackwell, USACrossRefGoogle Scholar
  5. Beadell JS, Gering E, Austin J, Dumbacher JP, Peirce MA, Pratt TK, Atkinson CT, Fleisher RC (2004) Prevalence and differential host‐specificity of two avian blood parasite genera in the Australo‐Papuan region. Mol Ecol 13:3829–3844CrossRefPubMedGoogle Scholar
  6. Bennett GF (1978) Avian Haemoproteidae. 8. The haemoproteids of the bee-eater family (Meropidae). Can J Zool 56:1721–1725CrossRefGoogle Scholar
  7. Bennett GF, Campbell AG (1972) Avian Haemoproteidae. I. Description of Haemoproteus fallisi n. sp. and a review of the haemoproteids of the family Turdidae. Can J Zool 50:1269–1275CrossRefPubMedGoogle Scholar
  8. Bennett GF, Peirce MA (1988) Morphological form in the avian Haemoproteidae and an annotated checklist of the genus Haemoproteus Kruse, 1890. J Nat Hist 22:1683–1696CrossRefGoogle Scholar
  9. Bennett GF, Gabaldon A, Ulloa G (1982) Avian Haemoproteidae. 17. The haemoproteids of the avian family Cracidae (Galliformes); the guans, curassows and chachalacas. Can J Zool 60:3105–3112CrossRefGoogle Scholar
  10. Bensch S (2015) MalAvi: A database for avian haemosporidian parasites (version 2.2.3). Online Lund University, Department of Biology
  11. Bensch S, Åkesson S (2003) Temporal and spatial variation of hematozoans in Scandinavian willow warblers. J Parasitol 89:388–391CrossRefPubMedGoogle Scholar
  12. Bensch S, Waldenström J, Jonzén N, Westerdahl H, Hansson B, Sejberg D, Hasselquist D (2007) Temporal dynamics and diversity of avian malaria parasites in a single host species. J Anim Ecol 76:112–122CrossRefPubMedGoogle Scholar
  13. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358CrossRefPubMedGoogle Scholar
  14. Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2015) GenBank. Nucleic Acids Res 43(Database issue):D30CrossRefPubMedGoogle Scholar
  15. Christidis L, Boles WE (2008) Systematics and taxonomy of Australian birds. CSIRO Publishing, CollingwoodGoogle Scholar
  16. Clark NJ, Clegg SM, Lima MR (2014) A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. Int J Parasitol 44:329–338. doi: 10.1016/j.ijpara.2014.01.004 CrossRefPubMedGoogle Scholar
  17. Clark N, Adlard R, Clegg S (2015a) Molecular and morphological characterization of Haemoproteus (Parahaemoproteus) ptilotis, a parasite infecting Australian honeyeaters (Meliphagidae), with remarks on prevalence and potential cryptic speciation. Parasitol Res 114:1921–1928. doi: 10.1007/s00436-015-4380-8 CrossRefPubMedGoogle Scholar
  18. Clark NJ, Olsson-Pons S, Ishtiaq F, Clegg SM (2015b) Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird. Int J Parasitol 45:891–899. doi: 10.1016/j.ijpara.2015.08.008 CrossRefPubMedGoogle Scholar
  19. Dodge M, Dumbacher JP, Evans EL, Sehgal RNM (2011). Phylogenetic analysis of avian haemosporidian parasites across islands of Papua New Guinea. Unpublished data. GenBankGoogle Scholar
  20. Drovetski SV, Aghayan SA, Mata VA, Lopes RJ, Mode NA, Harvey JA, Voelker G (2014) Does the niche breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian Haemosporidia? Mol Ecol 23:3322–3329. doi: 10.1111/mec.12744 CrossRefPubMedGoogle Scholar
  21. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. doi: 10.1093/molbev/mss075 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ewen JG, Bensch S, Blackburn TM, Bonneaud C, Brown R, Cassey P, Clarke RH, Pérez‐Tris J (2012) Establishment of exotic parasites: the origins and characteristics of an avian malaria community in an isolated island avifauna. Ecol Lett 15:1112–1119CrossRefPubMedGoogle Scholar
  23. Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121CrossRefGoogle Scholar
  24. Hellgren O, Križanauskiene A, Valkiūnas G, Bensch S (2007) Diversity and phylogeny of mitochondrial cytochrome B lineages from six morphospecies of avian Haemoproteus (Haemosporida: Haemoproteidae). J Parasitol 93:889–896CrossRefPubMedGoogle Scholar
  25. Hellgren O, Pérez-Tris J, Bensch S (2009) A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology 90:2840–2849. doi: 10.1890/08-1059.1 CrossRefPubMedGoogle Scholar
  26. Ishtiaq F, Clegg SM, Phillimore AB, Black RA, Owens IPF, Sheldon BC (2010) Biogeographical patterns of blood parasite lineage diversity in avian hosts from southern Melanesian islands. J Biogeogr 37:120–132. doi: 10.1111/j.1365-2699.2009.02189.x CrossRefGoogle Scholar
  27. IUCN (2012) IUCN Red List Categories and Criteria: Version 3.1. Second Edition. IUCN, Gland, Switzerland and Cambridge, UK, pp iv-32Google Scholar
  28. Kearns AM, Joseph L, Cook LG (2010) The impact of Pleistocene changes of climate and landscape on Australian birds: a test using the Pied Butcherbird (Cracticus nigrogularis). EMU 110:285–295. doi: 10.1071/mu10020 CrossRefGoogle Scholar
  29. Kearns AM, Joseph L, Omland KE, Cook LG (2011) Testing the effect of transient Plio-Pleistocene barriers in monsoonal Australo-Papua: did mangrove habitats maintain genetic connectivity in the Black Butcherbird? Mol Ecol 20:5042–5059. doi: 10.1111/j.1365-294X.2011.05330.x CrossRefPubMedGoogle Scholar
  30. Kearns AM, Joseph L, Cook LG (2013) A multilocus coalescent analysis of the speciational history of the Australo-Papuan butcherbirds and their allies. Mol Phylogenet Evol 66:941–952CrossRefPubMedGoogle Scholar
  31. Laurance SG, Jones D, Westcott D, Mckeown A, Harrington G, Hilbert DW (2013) Habitat fragmentation and ecological traits influence the prevalence of avian blood parasites in a tropical rainforest landscape. PLoS ONE 8(10):e76227CrossRefPubMedPubMedCentralGoogle Scholar
  32. Matta NE, Pacheco MA, Escalante AA, Valkiunas G, Ayerbe-Quinones F, Acevedo-Cendale LD (2014) Description and molecular characterization of Haemoproteus macrovacuolatus n. sp. (Haemosporida, Haemoproteidae), a morphologically unique blood parasite of black-bellied whistling duck (Dendrocygna autumnalis) from South America. Parasitol Res 113(1432 –1955 (Electronic)):2991–3000. doi: 10.1007/s00436-014-3961-2 CrossRefPubMedGoogle Scholar
  33. Olsson‐Pons S, Clark NJ, Ishtiaq F, Clegg SM (2015) Differences in host species relationships and biogeographic influences produce contrasting patterns of prevalence, community composition and genetic structure in two genera of avian malaria parasites in southern Melanesia. J Anim Ecol 84:985–998CrossRefPubMedGoogle Scholar
  34. Outlaw DC, Ricklefs RE (2014) Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. Parasitology 141:1223–1232. doi: 10.1017/S0031182014000560 CrossRefPubMedGoogle Scholar
  35. Palinauskas V, Žiegytė R, Ilgūnas M, Iezhova TA, Bernotienė R, Bolshakov C, Valkiūnas G (2015) Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol 45:51–62. doi: 10.1016/j.ijpara.2014.08.012 CrossRefPubMedGoogle Scholar
  36. Peirce MA, Adlard RD, Lederer R (2005) A new species of Leucocytozoon Berestneff, 1904 (Apicomplexa: Leucocytozoidae) from the avian family Artamidae. Syst Parasitol 60:151–154CrossRefPubMedGoogle Scholar
  37. Reeves AB, Smith MM, Meixell BW, Fleskes JP, Ramey AM (2015) Genetic diversity and host specificity varies across three genera of blood parasites in ducks of the Pacific Americas Flyway. PLoS ONE 10:e0116661. doi: 10.1371/journal.pone.0116661 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Richardson D, Jury F, Blaakmeer K, Komdeur J, Burke T (2001) Parentage assignment and extra‐group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). Mol Ecol 10:2263–2273CrossRefPubMedGoogle Scholar
  39. Sehgal RNM, Hull AC, Anderson NL, Valkiūnas G, Markovets MJ, Kawamura S, Tell LA (2006) Evidence for cryptic speciation of Leucocytozoon spp. EUCOCYTOZOON SPP. (Haemosporida, Leucocytozoidae) in diurnal raptors. J Parasitol 92:375–379. doi: 10.1645/GE-656R.1 CrossRefPubMedGoogle Scholar
  40. Siraj AS, Bouma MJ, Santos-Vega M, Yeshiwondim AK, Rothman DS, Yadeta D, Sutton PC, Pascual M (2015) Temperature and population density determine reservoir regions of seasonal persistence in highland malaria. Proc R Soc Lond B Biol 282:2151383. doi: 10.1098/rspb.2015.1383 CrossRefGoogle Scholar
  41. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  42. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, FloridaGoogle Scholar
  43. Valkiūnas G, Liutkevičius G, Iezhova TA (2002) Complete development of three species of Haemoproteus (Haemosporida, Haemoproteidae) in the biting midge Culicoides impunctatus (Diptera, Ceratopogonidae). J Parasitol 88:864–868. doi: 10.1645/0022-3395(2002)088[0864:cdotso];2 CrossRefPubMedGoogle Scholar
  44. Valkiūnas G, Bairlein F, Iezhova TA, Dolnik OV (2004) Factors affecting the relapse of Haemoproteus belopolskyi infections and the parasitaemia of Trypanosoma spp. in a naturally infected European songbird, the blackcap, Sylvia atricapilla. Parasitol Res 93:218–222CrossRefPubMedGoogle Scholar
  45. Waldenström J, Bensch S, Hasselquist D, Östman Ö (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194. doi: 10.1645/ge-3221rn CrossRefPubMedGoogle Scholar
  46. Zamora-Vilchis I, Williams SE, Johnson CN (2012) Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: implications for disease in a warming climate. PLoS ONE 7:e39208CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhang Y, Wu Y, Zhang Q, Su D, Zou F (2014) Prevalence patterns of avian Plasmodium and Haemoproteus parasites and the influence of host relative abundance in Southern China. PLoS ONE 9:e99501. doi: 10.1371/journal.pone.0099501 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • W. Goulding
    • 1
    • 2
    Email author
  • R. D. Adlard
    • 2
  • S. M. Clegg
    • 3
  • N. J. Clark
    • 2
    • 4
  1. 1.The Landscape Ecology and Conservation Group, School of Geography, Planning and Environmental ManagementUniversity of Queensland-St LuciaSt LuciaAustralia
  2. 2.Biodiversity Program, Queensland MuseumSouth BrisbaneAustralia
  3. 3.Edward Grey Institute for Field Ornithology, Department of ZoologyUniversity of OxfordOxfordUK
  4. 4.School of Veterinary ScienceUniversity of Queensland-GattonGattonAustralia

Personalised recommendations