Skip to main content
Log in

De novo RNA-Seq and functional annotation of Sarcoptes scabiei canis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The transcriptomic data of Sarcoptes is still lacking in the public database due to the difficulty in extracting high-quality RNA from tiny mites with thick chitin. In this study, total RNA was extracted from live Sarcoptes mites for quality assessment, RNA-Seq, functional annotation, and coding region (CD) prediction and verification. The results showed that the sample JMQ-lngm was qualified for cDNA library construction. Firstly, Agilent 2100 detection showed that the RNA baseline was smooth and the 18S peak was single. Second, the Illumina platform generated 65.78M clean reads and 20,826 unigenes with 35.43M were assembled, occupying 62.98 % of the 56.26M genome. In total, 15,034 unigenes were annotated in seven functional databases. Finally, 13,122 CDs were detected in the 20,826 unigenes, of which 70 complete CDs were matched with Sarcoptes manually in non-redundant nucleotide (NT). Three CDs with indels ≥10 bp were verified. Those results indicated that peritrophin sequences of JMQ-lngm missed 35 bp during the assembly; the pressure-sensitive sodium channel sequences of all the six Sarcoptes scabiei canis isolates were confirmed to be 90 bp shorter than that of a Sarcoptes scabiei hominis isolate; three introns remained in PH chlorine ion channel gating sequences of JMQ-lngm. Moreover, the allergen gene prediction for JMQ-lngm indicated that 61 unigenes were matched with 19 allergen genes of Dermatophagoides, of which Der 1, Der 3, Der 8, and Der 10 had been confirmed in NT. In conclusion, this study successfully completed the RNA-Seq and functional annotation of S. s. canis for the first time, which provides molecular data for future studies on the identification and pathogenic genes of Sarcoptidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alasaad S, Soglia D, Spalenza V, Maione S, Soriguer RC, Pereza JM, Rasero R, Degiorgis MR, Nimmervoll H, Zhu XQ, Rossi L (2009) Is ITS-2 rDNA suitable marker for genetic characterization of Sarcoptes mites from different wild animals in different geographic areas? Vet Parasitol 159:181–185

    Article  CAS  PubMed  Google Scholar 

  • Amer S, Wahab TAE, Metwaly AEN, Ye J, Roellig D, Feng YY, Xiao LH (2014) Preliminary molecular characterizations of Sarcoptes scaibiei (Acari: Sarcoptidae) from farm animals in Egypt. PLoS One 9:e94705

    Article  PubMed  PubMed Central  Google Scholar 

  • Arlian LG, Vyszenski-Moher DL, Cordova D (1988) Host specificity of S. scabiei var. canis (Acari: Sarcoptidae) and the role of host odor. J Med Entomol 25:52–56

    Article  CAS  PubMed  Google Scholar 

  • Cabrera AR, Donohue KV, Khalil SMS, Scholl E, Opperman C, Sonenshine DE, Michael Roe R (2011) New approach for the study of mite reproduction: the first transcriptome analysis of a mite, Phytoseiulus persimilis (Acari: Phytoseiidae). J Insect Physiol 57:52–61

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Chatterjec A, Chakrabarti K, Sengupta DN (1981) Human scabies from contact with water buffaloes infested with Sarcoptes scabies var. bubalis. Ann Trop Med Parasitol 75:353–357

    Article  CAS  PubMed  Google Scholar 

  • Chan TF, Ji KM, Yim AK, Liu XY, Zhou JW, Li RQ, Yang KY, Li J, Li M, Law PT, Wu YL, Cai ZL, Qin H, Bao Y, Leung RK, Ng PK, Zou J, Zhong XJ, Ran PX, Zhong NS, Liu ZG, Tsui SK (2015) The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol 135:539–547

    Article  CAS  PubMed  Google Scholar 

  • Conte YL, Alaux C, Martin JF, Harbo JR, Harris JW, Dantec C, Séverac D, Cros-Arteil S, Navajas M (2011) Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. Insect Mol Biol 20:399–408

    Article  PubMed  Google Scholar 

  • Duan HF, Wang L, Wang J (2000) A investigation report of an outbreak of human scabies caused by Sarcoptes scabies from rabbit factory in Harbin. Harbin Med J 20:36–37

    Google Scholar 

  • Fain A (1968) Étude de la variabilité de Sarcoptes scabiei avec une revisiondes Sarcoptidae. Acta Zool Pathol Antverp 47:1–196

    Google Scholar 

  • Hoy MA, Yu FH, Meyer JM, Tarazona OA, Jeyaprakash A, Wu K (2013) Transcriptome sequencing and annotation of the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae): a cautionary tale about possible contamination by prey sequences. Exp Appl Acarol 59:283–296

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Zhao YE, Cheng J, Yang YJ, Li C, Lu ZH (2015) Constructing and detecting a cDNA library for mites. Parasitol Res 114:3893–3901

    Article  PubMed  Google Scholar 

  • Kenyon F, Welsh M, Parkinson J, Whitton C, Blaxter ML, Knox DP (2003) Expressed sequence tag survey of gene expression in the scab mite Psoroptes ovis—allergens, proteases and free-radical scavengers. Parasitology 126:451–460

    Article  CAS  PubMed  Google Scholar 

  • Lee AJ, Elwyn Isaac R, Coates D (1999) The construction of a cDNA expression library for the sheep scab mite Psoroptes ovis. Vet Parasitol 83:241–252

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Jiang GF, Zhang YF, Li JL, Li XJ, Yue JS, Chen F, Liu HQ, Zhu SP, Wang JJ, Ran C (2011) Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). PLoS One 6:e28516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miodrag G, Thomas VL, Clark RM (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 2479:487–492

    Google Scholar 

  • Nayel NM, Abu-Samra MT (1986) Experimental infection of the one-humped camel (Camelus dromedarius) with Sarcoptes scabiei var. cameli and S. scabiei var. ovis. Ann Trop Med Parasitol 80:553–561

    CAS  PubMed  Google Scholar 

  • Pence DB, Casto SD, Samuel WM (1975) Variation in the chaetotaxy and denticulation of Sarcoptes scabiei (Acarina: Sarcoptidae) from wild canids. Acarologia 17:160–165

    CAS  PubMed  Google Scholar 

  • Rider SD Jr, Morgan MS, Arlian LG (2015) Draft genome of the scabies mite. Parasite Vector 8:585

    Article  Google Scholar 

  • Schicht S, Qi WH, Poveda L, Strube C (2013) The predicted secretome and transmembranome of the poultry red mite Dermanyssus gallinae. Parasite Vector 6:259

    Article  Google Scholar 

  • Skerratt LF, Middleton D, Beveridge I (1999) Distribution of life cycle stages of Sarcoptes scabiei var wombati and effects of severe mange on common wombats in Victoria. J Wildlife Dis 35:633–646

    Article  CAS  Google Scholar 

  • Skerratt L, Campbell N, Murrell A, Walton S, Kemp D, Barker SC (2002) The mitochondrial 12S gene is a suitable marker of populations of Sarcoptes scabiei from wombats, dogs and humans in Australia. Parasitol Res 88:376–379

    Article  CAS  PubMed  Google Scholar 

  • Stuglik MT, Babik W, Prokop Z, Radwan J (2014) Alternative reproductive tactics and sex-biased gene expression: the study of the bulb mite transcriptome. Ecol Evol 4:623–632

    Article  Google Scholar 

  • Walton SF, Dougall A, Pizzutto S, Holt D, Taplin D, Arlian LG, Morgan M, Currie BJ, Kempd DJ (2004) Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int J Parasitol 34:839–849

    Article  CAS  PubMed  Google Scholar 

  • Xu ZF, Zhu WY, Liu YC, Liu X, Chen QS, Peng M, Wang XZ, Shen GM, He L (2014) Analysis of insecticide resistance-related genes of the carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome. PLoS One 9:e94779

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang HY, Zhang XL, Li JP (2015) An outbreak of scabies and treatment in a hospital. China J Infect Control 14:205–206

    Google Scholar 

  • Zhao YE, Cao ZG, Cheng J, Hu L, Ma JX, Yang YJ, Wang XP, Zeng JH, Wang TP (2015) Population identification of Sarcoptes hominis and Sarcoptes canis in China using DNA sequences. Parasitol Res 114:1001–1010

    Article  PubMed  Google Scholar 

  • Zhao YE, Hu L, Yang YJ, Niu DL, Wang RL, Li WH, Ma SJ, Cheng J (2016) Improvement on the extraction method of RNA in mites and its quality test. Parasitol Res 115:851–858

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 81271856 and 81471972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaE Zhao.

Ethics declarations

Conflicts of interest

None declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 35 kb)

ESM 2

(DOCX 46 kb)

ESM 3

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Zhao, Y., Yang, Y. et al. De novo RNA-Seq and functional annotation of Sarcoptes scabiei canis . Parasitol Res 115, 2661–2670 (2016). https://doi.org/10.1007/s00436-016-5013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5013-6

Keywords

Navigation