Methodological considerations
The dogs spent 113 of the 171 days (66 %) of study duration after first treatment application, in outdoor housing. Their housing conditions can be considered as representative of a free-outdoor access. The study was run between 22 July 2009 and 8 February 2010 in Oklahoma (USA). One treatment was performed on the 6 August 2009, during one of the rainiest (188 mm of precipitation) and hottest (25.5 °C) months of the study (Fig. 2).
As demonstrated in the CS group, flea and tick challenges were successful during the whole duration of the study. Moreover, at the beginning of the experiment and before administration of the treatments, the four groups exhibited very similar levels of GM flea (from 67.4 to 69.0) and tick (from 19.5 to 21.9) counts.
In this study, infestations by the two parasites were artificial: the fleas and ticks were directly deposited on the haircoat of dogs, whereas in natural conditions, fleas jump on their targeted host and questing ticks crawl from down to upside positions. When they infest a permethrin-treated host, these parasites are repelled and leave the host. While the present experiment was designed to assess insecticidal and acaricidal efficacy, it was not designed to assess the repellency properties of IP and DPP permethrin-based combinations.
Efficacy against adult fleas
When efficacy was assessed 15 or 26 days after treatment, the three products exhibited very high adulticidal efficacy levels (>97.9–100 %). Because of these asymptotic levels, it was not possible to detect any difference between the products since all of them demonstrated a much lower (p < 0.0001) adult flea count than the control. We can therefore consider them all suitable for flea adulticidal activity in outdoor dogs. In a previous field study, FM and DPP formulations already provided very similar levels of protection against fleas (Dryden et al. 2011).
Interestingly, adulticidal efficacy was assessed at the end of the study, 64 days after the last treatment, mimicking a lack of compliance. At this time point, again, all the groups treated with actives had lower adult flea counts than the CS group. The different treatments provided a 2-month protection against artificial infestations with adult fleas on dogs, without any negative interaction of outdoor housing conditions.
It is generally considered that permethrin (at 50 mg/Kg BW), one of the adulticidal actives of DPP, is deposited in the upper layers of the stratum corneum and on the surface of hairs (Lüssenhop et al. 2012). Fipronil, however, spreads across the body within the skin’s sebum and accumulates in pilo-sebaceous glands and in superficial layers of the epidermis. This was demonstrated, in Beagle dogs, with a volume and dose of product (FM, 1.34 mL, 10 mg/Kg) similar to the one used in our study (Cochet et al. 1997). However, 2 months after treatment, in outdoor conditions, this property of FM did not confer any detectable advantage to this formulation as compared to DPP regarding flea adulticidal activity.
Efficacy against immature stages of fleas
For all DPP, FM and IP treatment groups and collection points, no eggs were collected up to day 120 of the study. This is probably the consequence of the high adulticidal efficacy of the products which killed the fleas before they laid their eggs as the animals were treated either 18–19 or 29–30 days before collection of eggs. Because no adult flea count was performed after egg collection, this hypothesis cannot be fully verified but the flea count conducted following day 115 infestation highly suggests this. Indeed, we counted only zero to one flea (six dogs without fleas) in the DPP-treated group, zero to three fleas (four dogs without fleas) in the FM-treated group and zero to nine fleas (five dogs without fleas) in the IP-treated group. Because of this high adulticidal activity, the adult flea population and the subsequent egg production may therefore have been highly reduced, falling under our detection limit.
In order to reduce the interaction between adulticidal and IGR actives, egg collection and subsequent evaluation of egg hatch and adult emergence were assessed 64 days after the last treatment. Despite the high adulticidal efficacy (>97.9 %), the number of flea-free dogs dropped to two, three and zero for DPP, FM and IP, respectively, and eggs were collected in every group. DPP and FM formulations contain a true IGR active: pyriproxyfen and (S)-methoprene, respectively, whereas IP has none. This resulted in a higher viability of the eggs, with larvae hatching more successfully in the IP-treated group than in the DPP- and FM-treated groups. The larvae were also more successful in their pupation and emergence process up to adults in the IP-treated group than in the DPP- and FM-treated groups. Both FM and DPP provided very satisfactory levels of protection against immature stages of fleas. These results confirmed previous observations with DPP performed on transplanted and ready to hatch fleas (Bouhsira et al. 2012b).
An increasing number of products without IGR actives is available to pet owners. These results demonstrate that such products cannot provide the same duration of protection against the immature population of fleas. Moreover, this experimental design was favourable to IGR-like activity. Indeed, it only mimicked the control of offspring production from fleas infesting the treated pets at specific time points. These fleas were directly exposed to the treated pets. Unlike in real situations, neither environmental infestation (wild animals, etc.) nor egg infestation of the dog surroundings occurred. In more realistic circumstances, more benefits of true IGR substances, which also prevent fleas from developing in the environment of the treated pets, would be expected.
Efficacy against ticks (R. sanguineus)
Despite the free outdoor access housing of the dogs, the tick counts were lower in all treated groups compared to the CS group. However, the different formulations provided different levels of protection. DPP, containing the acaricide permethrin, had higher efficacy than FM, containing the acaricide fipronil, as measured 30 days after the first (93.2 vs. 38.0 %) and third (95.3 vs. 47.7 %) monthly treatments. At these two time points, all the dogs treated with FM had at least 6 ticks attached and, more precisely, 7 to 16 ticks after the first treatment and 6 to 20 ticks after the third treatment. Moreover, a strong reduction in acaricidal efficacy was detected between the 16th (99.6–85.8 %) and the 30th (38.0–47.7 %) day after treatment in the FM-treated group. This phenomenon is compatible with a reduced residual concentration of the acaricide-active fipronil in the coat of the animals at the end of the expected treatment duration (1 month). In the outdoor conditions of our experiment, the spreading properties of the fipronil-based formulation did not provide any advantage as compared to the permethrin-based formulations. This difference in acaricidal activity between these fipronil-based and permethrin-based products has been documented in several studies: a laboratory experiment in dogs infested with R. sanguineus (Dryden et al. 2006), a multi-centre field study against adult Ixodes and Rhipicephalus ticks (Hellmann et al. 2003) and under natural conditions against both immature and adult stages of R. sanguineus (Otranto et al. 2005). These experiments all demonstrated that, at the end of the treatment duration, permethrin-based products such as IP and DPP are more effective against R. sanguineus than the fipronil-based combination FM. However, the residual acaricidal efficacy of the IP group was only 81.4 % 30 days after the first treatment.
DPP was already shown to be highly effective against Amblyomma americanum and A. maculatum (Coyne 2009). Our study confirms that DPP provides a satisfactory level of protection to dogs against R. sanguineus, without any adverse effect and despite the fact that dogs spent 5 months in challenging a free access outdoor housing. It can therefore be concluded that DPP is appropriate to protect active dogs with outdoor access against R. sanguineus ticks.