Skip to main content

Advertisement

Log in

Maturation of Plasmodium falciparum in multiply infected erythrocytes and the potential role in malaria pathogenesis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Erythrocytes containing two or more parasites, referred to here as multiply infected erythrocytes (MIEs), are common in the blood of humans infected by Plasmodium falciparum. It is necessary to study these cells closely because the excess numbers of parasites they contain suggest that they could be overloaded with virulence factors. Here, microscopic examinations of blood smears from patients showed that up to seven merozoites can successfully invade an erythrocyte and mature to ring stage. However, in vitro culture showed that only up to three parasites can mature to late schizont stage. These observations were made by culturing the parasites in erythrocytes containing hemoglobin AA (HbAA), HbAS, and HbSS. Biochemical analysis of saponin-concentrated culture suggests that more hemozoin is produced in a MIE than in a singly infected erythrocyte (SIE). Studies have shown that ingestion of excessive hemozoin destroys monocytes and neutrophils, which could impair the immune system. Cultured parasites were also examined by transmission electron microscopy, and it was found that the quantity of knobs was dramatically increased on the membranes of erythrocytes containing multiple schizonts, compared to those containing only one schizont. Knobs contain, among other things, P. falciparum erythrocyte membrane protein 1 (PfEMP1) complex which mediates sequestration and promotes severe malaria. These findings suggest that P. falciparum increases its virulence by producing MIEs. On sexual life cycle of the parasite, microphotographs are presented in this report showing, for the first time, that two gametocytes can develop in one erythrocyte; they are referred to here as twin gametocytes. It is not known whether they can infect mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrews KT, Lanzer M (2002) Maternal malaria: Plasmodium falciparum sequestration in the placenta. Parasitol Res 88:715–723

    Article  PubMed  Google Scholar 

  • Baton LA, Ranford-Cartwright LC (2005) Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito. Trends Parasitol 21:573–580

    Article  PubMed  Google Scholar 

  • Berendt AR, McDowall A, Craig AG, Bates PA, Sternberg MJE, Marsh K, Newbold CI, Hogg N (1992) The binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes overlaps, but is distinct from, the LFA-1-binding site. Cell 68:71–81

    Article  PubMed  CAS  Google Scholar 

  • Bousema T, Drakeley C (2011) Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 24:377–410

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyle MJ, Wilson DW, Richards JS, Riglar DT, Tetteh KKA, Conway DJ, Ralph SA, Baum J, Beeson JG (2010) Isolation of viable Plasmodium falciparum merozoites to define erythrocyte invasion events and advance vaccine and drug development. Proc Natl Acad Sci U S A 107:14378–14383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brown AE, Webster HK, Teja-Isavadharm P, Keeratithakul D (1990) Macrophage activation in falciparum malaria as measured by neopterin and interferon-gamma. Clin Exp Immunol 82:97–101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bunn HF (2013) The triumph of good over evil: protection by the sickle gene against malaria. Blood 121:20–25

    Article  PubMed  CAS  Google Scholar 

  • Cooke BM, Mohandas N, Coppel RL (2001) The malaria-infected red blood cell: structural and functional changes. Adv Parasitol 50:1–86

    Article  PubMed  CAS  Google Scholar 

  • Diez M, Guillotte M, LeScanf D, Contamin H, David P, Cooke B, Mercerau-Puijalon O, Bonnefoy S (2005) Revisiting putative functional properties of the Plasmodium falciparum Pf155/RESA protein using genetically engineered parasites. J Eukaryot Microbiol 52:28S–34S

    Article  Google Scholar 

  • Doumbo OK, Thera MA, Kone AK, Rasa A, Tempest LJ, Lyke KE, Plowe CV, Rowe JA (2009) High levels of Plasmodium falciparum rosetting in all clinical forms of severe malaria in African children. Am J Trop Med Hyg 81:987–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Facer CA, Brown J (1981) Lancet 1:897–898

    Article  PubMed  CAS  Google Scholar 

  • Gerald N, Mahajan B, Kumar S (2011) Mitosis in the human malaria parasite Plasmodium falciparum. Eukaryot Cell 10:474–482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glenister F, Fernandez KM, Kats LM, Hanssen E, Mohandas N, Coppel RL, Cooke BM (2009) Functional alteration of red blood cells by a megadalton protein of Plasmodium falciparum. Blood 113:919–928

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goldberg DE, Cowman AF (2010) Moving in and renovating: exporting proteins from Plasmodium into host erythrocytes. Nat Rev Microbiol 8:617–21

    Article  PubMed  CAS  Google Scholar 

  • Gong L, Maiteki-Sebuguzi C, Rosenthal PJ, Hubbard AE, Drakeley CJ, Dorsey G, Greenhouse B (2012) Evidence for both innate and acquired mechanisms of protection from Plasmodium falciparum in children with sickle cell trait. Blood 119:3808–3814

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hawking F, Wilson ME, Gammage K (1971) Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Trans R Soc Trop Med Hyg 65:549–555

    Article  PubMed  CAS  Google Scholar 

  • Ho M, Cavis TME, Silamut K, Bunnag D, White NJ (1991) Rosette formation of Plasmodium falciparum-infected erythrocytes from patients with acute malaria. Infect Immun 59:2135–2139

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kerlin DH, Gatton ML (2013) Preferential invasion by Plasmodium merozoites and the self-regulation of parasite burden. PLoS ONE 8(2):e57434. doi:10.1371/journal.pone.0057434

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Luzzatto L, Nwachuku-Jarrett ES, Reddy S (1970) Increased sickling of parasitised erythrocytes as mechanism of resistance against malaria in sickle-cell trait. Lancet 1:319–321

    Article  PubMed  CAS  Google Scholar 

  • Magowan C, Coppel RL, Lau AOT, Moronne MM, Tchernia G, Mohandas N (1995) Role of the Plasmodium falciparum mature-parasite-infected erythrocyte surface antigen (MESA/PfEMP-2) in malarial infection of erythrocytes. Blood 86:3196–3204

    PubMed  CAS  Google Scholar 

  • Martin Olivier M, Van Den Ham K, Shio MT, Kassa FA, Fougeray S (2014) Malarial pigment hemozoin and the inflammatory response. Front Immunol 05 February 2014 | doi: 10.3389/fimmu.2014.00025

  • Martiney JA, Sherry B, Metz CN, Espinoza M, Ferrer AS, Calandra T, Broxmeyer HE, Bucala R (2000) Macrophage migration inhibitory factor release by macrophages after ingestion of Plasmodium chabaudi-infected erythrocytes: possible role in the pathogenesis of malarial anemia. Infect Immun 68:2259–2267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meis JF, Ponnudurai T, Mons B, van Belkum A, van Eerd PM, Druilhe P, Schellekens H (1990) Plasmodium falciparum: studies on mature exoerythrocytic forms in the liver of the chimpanzee, Pan troglodytes. Exp Parasitol 70:1–11

    Article  PubMed  CAS  Google Scholar 

  • Mujuzi G, Magambo B, Okech B, Egwang TG (2006) Pigmented monocytes are negative correlates of protection against severe and complicated malaria in Ugandan children. Am J Trop Med Hyg 74:724–729

    PubMed  Google Scholar 

  • Mundwiler-Pachlatko E, Beck H-P (2013) Maurer’s clefts, the enigma of Plasmodium falciparum. Proc Natl Acad Sci, USA 110:19987-19994

  • Naumann KM, Jones GL, Saul A, Smth R (1992) Parasite-induced changes to localized erythrocyte membrane deformability in Plasmodium falciparum cultures. Immunol Cell Biol 70:267–275

    Article  PubMed  Google Scholar 

  • Newton CRJC, Hien TT, White N (2000) Neurological aspects of tropical disease cerebral malaria. J Neurol Neurosurg Psychiatry 69:433–441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Orjih AU (2008) Requirements for maximal enrichment of viable intraerythrocytic Plasmodium falciparum rings by saponin hemolysis. Exp Biol Med 233:1359–1367

    Article  CAS  Google Scholar 

  • Orjih AU (2012) Hemozoin accumulation in Garnham bodies of Plasmodium falciparum gametocytes. Parasitol Res 111:2353–2359

    Article  PubMed  Google Scholar 

  • Orjih AU, Cherian PT (2013) Possible relationship between Plasmodium falciparum ring-infected erythrocyte surface antigen (RESA) and host cell resistance to destruction by chemicals. Parasitol Res 112:4043–4051

  • Orjih AU, Ryerse JS, Fitch CD (1994) Hemoglobin catabolism and the killing of intraerythrocytic Plasmodium falciparum by chloroquine. Experientia 50:34–39

    Article  PubMed  CAS  Google Scholar 

  • Orjih AU, Cherian P, AlFadhli S (2008) Microscopic detection of mixed malarial infections: improvement by saponin hemolysis. Med Princ Pract 17:458–463

    Article  PubMed  Google Scholar 

  • Pei X, Guo X, Coppel R, Hbattacherjee S, Haldar K, Gratzer W, Mohandas N, An X (2007) The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 110:1036–1042

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM, Esiri MM, Day NPJ, White NJ, Turner GDH (2012) Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis 205:663–671

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathore D, Hrstka SCL, Sacci JB, Vega PD, Linhardt RJ, Kumar S, McCutchan TF (2003) Molecular mechanism of host specificity in Plasmodium falciparum infection : role of circumsporozoite protein. J Biol Chem 278:40905–40910

    Article  PubMed  CAS  Google Scholar 

  • Ridley RG (2002) Chemotherapeutic hope on the horizon for Plasmodium vivax malaria? Proc Natl Acad Sci U S A 99:13362–13364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwarzer E, Alessio M, Ulliers D, Arese P (1998) Phagocytosis of the malarial pigment, hemozoin, impairs expression of major histocompatibility complex class II antigen, CD54, and CD11c in human monocytes. Infect Immun 66:1601–1606

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sinden RE (2009) Malaria, sexual development and transmission: retrospect and prospect. Parasitol 36:1427–1434

    Article  Google Scholar 

  • Thomson JG, Robertson A (1935) The structure and development of Plasmodium falciparum gametocytes in the internal organs and peripheral circulation. Trans Roy Soc Trop Med Hyg 29:31–40

    Article  Google Scholar 

  • Triglia T, Thompson J, Caruana SR, Delorenzi M, Speed T, Cowman AF (2001) Identification of proteins from Plasmodium falciparum that are homologous to reticulocyte binding proteins in Plasmodium vivax. Infect Immun 69:1084–1092

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vernes A (1980) Phagocytosis of P. falciparum parasitized erythrocytes by peripheral monocytes. Lancet 2:1297–1298

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by Kuwait University Research Grant No. NM 03/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustine U. Orjih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orjih, A.U. Maturation of Plasmodium falciparum in multiply infected erythrocytes and the potential role in malaria pathogenesis. Parasitol Res 113, 4045–4056 (2014). https://doi.org/10.1007/s00436-014-4073-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4073-8

Keywords

Navigation