Skip to main content

Advertisement

Log in

Host Cell Remodeling by Plasmodium falciparum Sexual Stages

  • Malaria (DY Bargieri, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To thrive and survive, intracellular pathogens actively remodel their host cells. The mechanisms developed by the asexual stages of the human malaria parasite Plasmodium falciparum to remodel their host erythrocyte have been extensively described. However, they are less characterized for the sexual stages, called gametocytes, which are responsible for parasite transmission.

Recent Findings

Gametocytes develop in erythrocytes and have recently been shown to mature in nucleated erythroid precursors as well. The sexual stages of the parasite affect erythroblastic differentiation; however, it is still unclear whether erythroblasts undergo the same remodeling as their mature counterparts. We explore how erythrocytes and erythroblasts may be impacted by parasite development.

Summary

Gametocytes deeply modify their erythrocyte host by exporting proteins to the host cell cytosol and membrane. These proteins induce dramatic changes in the morphology and physiology of the infected erythrocyte which acquires novel mechanical, adhesive, and serologic properties. Some of these modifications play a key role for gametocyte sequestration in the bone marrow, subsequent release in the bloodstream and ability to persist in blood circulation. The gametocytes development in erythroblasts and the potential-induced remodeling of the host cell may also contribute to anemia and have crucial implications for how to target gametocytes in drug- or vaccine-based strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Health Organization. World Malaria Report 2020

  2. Hawking F, Wilson ME, Gammage K. Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1971;65:549–59.

    Article  CAS  PubMed  Google Scholar 

  3. Aguilar R, Magallon-Tejada A, Achtman AH, Moraleda C, Joice R, Cistero P, Li Wai Suen CS, Nhabomba A, Macete E, Mueller I, et al. Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood. 2014;123:959–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Joice R, Nilsson SK, Montgomery J, Dankwa S, Egan E, Morahan B, Seydel KB, Bertuccini L, Alano P, Williamson KC, et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci Transl Med. 2014;6:244re245.

    Article  CAS  Google Scholar 

  5. Cao P, Collins KA, Zaloumis S, Wattanakul T, Tarning J, Simpson JA, McCarthy J, McCaw JM. Modeling the dynamics of Plasmodium falciparum gametocytes in humans during malaria infection. Elife. 2019;8:e49058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, Taraschi TF, Howard RJ. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995;82:77–87.

    Article  CAS  PubMed  Google Scholar 

  7. Neveu G, Richard C, Dupuy F, Behera P, Volpe F, Subramani PA, Marcel-Zerrougui B, Vallin P, Andrieu M, Minz AM, et al. Plasmodium falciparum sexual parasites develop in human erythroblasts and affect erythropoiesis. Blood. 2020;136:1381–93 This paper reports that immature gametocytes can complete their development inside erythroblasts and that erythroblast infection triggers a delay in erythroide maturation.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Messina V, Valtieri M, Rubio M, Falchi M, Mancini F, Mayor A, Alano P, Silvestrini F. Gametocytes of the malaria parasite Plasmodium falciparum interact with and stimulate bone marrow mesenchymal cells to secrete angiogenetic factors. Front Cell Infect Microbiol. 2018;8:50 This paper reports that immature GIE, but not mature GIE, adhere to bone marrow mesenchymal cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Aingaran M, Zhang R, Law SK, Peng Z, Undisz A, Meyer E, Diez-Silva M, Burke TA, Spielmann T, Lim CT, Suresh S, Dao M, Marti M. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cell Microbiol. 2012;14:983–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dearnley MK, Yeoman JA, Hanssen E, Kenny S, Turnbull L, Whitchurch CB, Tilley L, Dixon MW. Origin, composition, organization and function of the inner membrane complex of Plasmodium falciparum gametocytes. J Cell Sci. 2012;125:2053–63.

    CAS  PubMed  Google Scholar 

  11. Tiburcio M, Niang M, Deplaine G, Perrot S, Bischoff E, Ndour PA, Silvestrini F, Khattab A, Milon G, David PH, et al. A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages. Blood. 2012;119:e172–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Counihan NA, Chisholm SA, Bullen HE, Srivastava A, Sanders PR, Jonsdottir TK, Weiss GE, Ghosh S, Crabb BS, Creek DJ, Gilson PR, de Koning-Ward TF. Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. Elife. 2017;6:e23217.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ito D, Schureck MA, Desai SA. An essential dual-function complex mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria parasites. Elife. 2017;6:e23485.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sherling ES, Knuepfer E, Brzostowski JA, Miller LH, Blackman MJ, van Ooij C. The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake. Elife. 2017;6:e23239.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaneko O, Tsuboi T, Ling IT, Howell S, Shirano M, Tachibana M, Cao YM, Holder AA, Torii M. The high molecular mass rhoptry protein, RhopH1, is encoded by members of the clag multigene family in Plasmodium falciparum and Plasmodium yoelii. Mol Biochem Parasitol. 2001;118:223–31.

    Article  CAS  PubMed  Google Scholar 

  16. Kaneko O, Yim Lim BY, Iriko H, Ling IT, Otsuki H, Grainger M, Tsuboi T, Adams JH, Mattei D, Holder AA, et al. Apical expression of three RhopH1/Clag proteins as components of the Plasmodium falciparum RhopH complex. Mol Biochem Parasitol. 2005;143:20–8.

    Article  CAS  PubMed  Google Scholar 

  17. Pei X, Guo X, Coppel R, Bhattacharjee S, Haldar K, Gratzer W, Mohandas N, An X. The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood. 2007;110:1036–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol. 2009;7:341–54.

    Article  CAS  PubMed  Google Scholar 

  19. Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C, Haldar K. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science. 2004;306:1934–7.

    Article  CAS  PubMed  Google Scholar 

  20. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science. 2004;306:1930–3.

    Article  CAS  PubMed  Google Scholar 

  21. Heiber A, Kruse F, Pick C, Gruring C, Flemming S, Oberli A, Schoeler H, Retzlaff S, Mesen-Ramirez P, Hiss JA, et al. Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLoS Pathog. 2013;9:e1003546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT, Sanders PR, Lundie RJ, Maier AG, Cowman AF, Crabb BS. A newly discovered protein export machine in malaria parasites. Nature. 2009;459:945–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ingmundson A, Alano P, Matuschewski K, Silvestrini F. Feeling at home from arrival to departure: protein export and host cell remodelling during Plasmodium liver stage and gametocyte maturation. Cell Microbiol. 2014;16:324–33.

    Article  CAS  PubMed  Google Scholar 

  24. Dearnley M, Chu T, Zhang Y, Looker O, Huang C, Klonis N, Yeoman J, Kenny S, Arora M, Osborne JM, et al. Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages. Proc Natl Acad Sci U S A. 2016;113:4800–5 This paper reports reversible changes in the nanostructure of the infected erythrocyte skeleton during gametocyte maturation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McRobert L, Preiser P, Sharp S, Jarra W, Kaviratne M, Taylor MC, Renia L, Sutherland CJ. Distinct trafficking and localization of STEVOR proteins in three stages of the Plasmodium falciparum life cycle. Infect Immun. 2004;72:6597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silvestrini F, Lasonder E, Olivieri A, Camarda G, van Schaijk B, Sanchez M, Younis Younis S, Sauerwein R, Alano P. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics. 2010;9:1437–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eksi S, Haile Y, Furuya T, Ma L, Su X, Williamson KC. Identification of a subtelomeric gene family expressed during the asexual-sexual stage transition in Plasmodium falciparum. Mol Biochem Parasitol. 2005;143:90–9.

    Article  CAS  PubMed  Google Scholar 

  28. Morahan BJ, Strobel C, Hasan U, Czesny B, Mantel PY, Marti M, Eksi S, Williamson KC. Functional analysis of the exported type IV HSP40 protein PfGECO in Plasmodium falciparum gametocytes. Eukaryot Cell. 2011;10:1492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Warncke JD, Passecker A, Kipfer E, Brand F, Perez-Martinez L, Proellochs NI, Kooij TWA, Butter F, Voss TS, Beck HP. The PHIST protein GEXP02 targets the host cytoskeleton during sexual development of Plasmodium falciparum. Cell Microbiol. 2020;22:e13123.

    Article  CAS  PubMed  Google Scholar 

  30. Tiburcio M, Dixon MW, Looker O, Younis SY, Tilley L, Alano P. Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage. Malar J. 2015;14:334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dantzler KW, Ma S, Ngotho P, Stone WJR, Tao D, Rijpma S, De Niz M, Nilsson Bark SK, Jore MM, Raaijmakers TK, et al. Naturally acquired immunity against immature Plasmodium falciparum gametocytes. Sci Transl Med. 2019;11:eaav3963 This paper reports a change in antigenic profile of the surface GIE during their maturation and validates that the antigens GEXP07 and GEXP10 are exposed at the surface of immature GIE.

  32. Oberli A, Zurbrugg L, Rusch S, Brand F, Butler ME, Day JL, Cutts EE, Lavstsen T, Vakonakis I, Beck HP. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton. Cell Microbiol. 2016;18:1415–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parish LA, Mai DW, Jones ML, Kitson EL, Rayner JC. A member of the Plasmodium falciparum PHIST family binds to the erythrocyte cytoskeleton component band 4.1. Malar J. 2013;12:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petter M, Bonow I, Klinkert MQ. Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis. PLoS One. 2008;3:e3779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Saito F, Hirayasu K, Satoh T, Wang CW, Lusingu J, Arimori T, Shida K, Palacpac NMQ, Itagaki S, Iwanaga S, Takashima E, Tsuboi T, Kohyama M, Suenaga T, Colonna M, Takagi J, Lavstsen T, Horii T, Arase H. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors. Nature. 2017;552:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sakoguchi A, Saito F, Hirayasu K, Shida K, Matsuoka S, Itagaki S, Nakai W, Kohyama M, Suenaga T, Iwanaga S, Horii T, Arase H. Plasmodium falciparum RIFIN is a novel ligand for inhibitory immune receptor LILRB2. Biochem Biophys Res Commun. 2021;548:167–73.

    Article  CAS  PubMed  Google Scholar 

  37. Kyes SA, Rowe JA, Kriek N, Newbold CI. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999;96:9333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Niang M, Bei AK, Madnani KG, Pelly S, Dankwa S, Kanjee U, Gunalan K, Amaladoss A, Yeo KP, Bob NS, Malleret B, Duraisingh MT, Preiser PR. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe. 2014;16:81–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanyal S, Egee S, Bouyer G, Perrot S, Safeukui I, Bischoff E, Buffet P, Deitsch KW, Mercereau-Puijalon O, David PH, et al. Plasmodium falciparum STEVOR proteins impact erythrocyte mechanical properties. Blood. 2012;119:e1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hliscs M, Millet C, Dixon MW, Siden-Kiamos I, McMillan P, Tilley L. Organization and function of an actin cytoskeleton in Plasmodium falciparum gametocytes. Cell Microbiol. 2015;17:207–25.

    Article  CAS  PubMed  Google Scholar 

  41. Hanssen E, Knoechel C, Dearnley M, Dixon MW, Le Gros M, Larabell C, Tilley L. Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J Struct Biol. 2012;177:224–32.

    Article  PubMed  Google Scholar 

  42. Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM, Wickham ME, Brown GV, Coppel RL, Cowman AF. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell. 1997;89:287–96.

    Article  CAS  PubMed  Google Scholar 

  43. Looker O, Blanch AJ, Liu B, Nunez-Iglesias J, McMillan PJ, Tilley L, Dixon MWA. The knob protein KAHRP assembles into a ring-shaped structure that underpins virulence complex assembly. PLoS Pathog. 2019;15:e1007761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Langreth SG, Jensen JB, Reese RT, Trager W. Fine structure of human malaria in vitro. J Protozool. 1978;25:443–52.

    Article  CAS  PubMed  Google Scholar 

  45. Luse SA, Miller LH. Plasmodium falciparum malaria. Ultrastructure of parasitized erythrocytes in cardiac vessels. Am J Trop Med Hyg. 1971;20:655–60.

    Article  CAS  PubMed  Google Scholar 

  46. Sinden RE. Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study. Parasitology. 1982;84:1–11.

    Article  CAS  PubMed  Google Scholar 

  47. Tiburcio M, Silvestrini F, Bertuccini L, Sander A, Turner L, Lavstsen T, Alano P. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface. Cell Microbiol. 2013;15:647–59.

    Article  CAS  PubMed  Google Scholar 

  48. Day KP, Hayward RE, Smith D, Culvenor JG. CD36-dependent adhesion and knob expression of the transmission stages of Plasmodium falciparum is stage specific. Mol Biochem Parasitol. 1998;93:167–77.

    Article  CAS  PubMed  Google Scholar 

  49. Luna EJ, Hitt AL. Cytoskeleton--plasma membrane interactions. Science. 1992;258:955–64.

    Article  CAS  PubMed  Google Scholar 

  50. Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood. 2008;112:3939–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bennett V, Stenbuck PJ. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature. 1979;280:468–73.

    Article  CAS  PubMed  Google Scholar 

  52. Blanc L, Salomao M, Guo X, An X, Gratzer W, Mohandas N. Control of erythrocyte membrane-skeletal cohesion by the spectrin-membrane linkage. Biochemistry. 2010;49:4516–23.

    Article  CAS  PubMed  Google Scholar 

  53. Chasis JA, Mohandas N. Erythrocyte membrane deformability and stability: two distinct membrane properties that are independently regulated by skeletal protein associations. J Cell Biol. 1986;103:343–50.

    Article  CAS  PubMed  Google Scholar 

  54. Cyrklaff M, Sanchez CP, Kilian N, Bisseye C, Simpore J, Frischknecht F, Lanzer M. Hemoglobins S and C interfere with actin remodeling in Plasmodium falciparum-infected erythrocytes. Science. 2011;334:1283–6.

    Article  CAS  PubMed  Google Scholar 

  55. Parker PD, Tilley L, Klonis N. Plasmodium falciparum induces reorganization of host membrane proteins during intraerythrocytic growth. Blood. 2004;103:2404–6.

    Article  CAS  PubMed  Google Scholar 

  56. Herricks T, Antia M, Rathod PK. Deformability limits of Plasmodium falciparum-infected red blood cells. Cell Microbiol. 2009;11:1340–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cranston HA, Boylan CW, Carroll GL, Sutera SP, Williamson JR, Gluzman IY, Krogstad DJ. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science. 1984;223:400–3.

    Article  CAS  PubMed  Google Scholar 

  58. Nash GB, O'Brien E, Gordon-Smith EC, Dormandy JA. Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum. Blood. 1989;74:855–61.

    Article  CAS  PubMed  Google Scholar 

  59. Glenister FK, Coppel RL, Cowman AF, Mohandas N, Cooke BM. Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood. 2002;99:1060–3.

    Article  CAS  PubMed  Google Scholar 

  60. Mills JP, Diez-Silva M, Quinn DJ, Dao M, Lang MJ, Tan KS, Lim CT, Milon G, David PH, Mercereau-Puijalon O, et al. Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci U S A. 2007;104:9213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Naissant B, Dupuy F, Duffier Y, Lorthiois A, Duez J, Scholz J, Buffet P, Merckx A, Bachmann A, Lavazec C. Plasmodium falciparum STEVOR phosphorylation regulates host erythrocyte deformability enabling malaria parasite transmission. Blood. 2016;127:e42–53.

    Article  CAS  PubMed  Google Scholar 

  62. Ramdani G, Naissant B, Thompson E, Breil F, Lorthiois A, Dupuy F, Cummings R, Duffier Y, Corbett Y, Mercereau-Puijalon O, Vernick K, Taramelli D, Baker DA, Langsley G, Lavazec C. cAMP-signalling regulates gametocyte-infected erythrocyte deformability required for malaria parasite transmission. PLoS Pathog. 2015;11:e1004815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. N'Dri M, Royer L, Lavazec, C. Tadalafil impacts the mechanical properties of Plasmodium falciparum gametocyte-infected erythrocytes. Mol Biochem Parasitol. 2021 July;244:111392.

  64. De Niz M, Meibalan E, Mejia P, Ma S, Brancucci NMB, Agop-Nersesian C, Mandt R, Ngotho P, Hughes KR, Waters AP, et al. Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow. Sci Adv. 2018;4:eaat3775.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Duez J, Holleran JP, Ndour PA, Loganathan S, Amireault P, Francais O, El Nemer W, Le Pioufle B, Amado IF, Garcia S, et al. Splenic retention of Plasmodium falciparum gametocytes to block the transmission of malaria. Antimicrob Agents Chemother. 2015;59:4206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lavazec C, Naissant B. Viagra(R) makes Plasmodium stiff: a novel way to block malaria transmission? Med Sci (Paris). 2015;31:826–8.

    Article  Google Scholar 

  67. Kirk K, Horner HA, Elford BC, Ellory JC, Newbold CI. Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J Biol Chem. 1994;269:3339–47.

    Article  CAS  PubMed  Google Scholar 

  68. Pretini V, Koenen MH, Kaestner L, Fens M, Schiffelers RM, Bartels M, Van Wijk R. Red blood cells: chasing interactions. Front Physiol. 2019;10:945.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Desai SA, Bezrukov SM, Zimmerberg J. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature. 2000;406:1001–5.

    Article  CAS  PubMed  Google Scholar 

  70. Ginsburg H, Krugliak M, Eidelman O, Cabantchik ZI. New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Mol Biochem Parasitol. 1983;8:177–90.

    Article  CAS  PubMed  Google Scholar 

  71. Bouyer G, Cueff A, Egee S, Kmiecik J, Maksimova Y, Glogowska E, Gallagher PG, Thomas SL. Erythrocyte peripheral type benzodiazepine receptor/voltage-dependent anion channels are upregulated by Plasmodium falciparum. Blood. 2011;118:2305–12.

    Article  CAS  PubMed  Google Scholar 

  72. Nguitragool W, Bokhari AA, Pillai AD, Rayavara K, Sharma P, Turpin B, Aravind L, Desai SA. Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell. 2011;145:665–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saul A, Graves P, Edser L. Refractoriness of erythrocytes infected with Plasmodium falciparum gametocytes to lysis by sorbitol. Int J Parasitol. 1990;20:1095–7.

    Article  CAS  PubMed  Google Scholar 

  74. Bouyer G, Barbieri D, Dupuy F, Marteau A, Sissoko A, N'Dri ME, Neveu G, Bedault L, Khodabux N, Roman D, et al. Plasmodium falciparum sexual parasites regulate infected erythrocyte permeability. Commun Biol. 2020;3:726 This paper reports that immature gametocytes activate new permeability pathwas at the surface of infected erythrocytes via a cAMP signaling-pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen Q, Barragan A, Fernandez V, Sundstrom A, Schlichtherle M, Sahlen A, Carlson J, Datta S, Wahlgren M. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med. 1998;187:15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017;15:479–91.

    Article  CAS  PubMed  Google Scholar 

  77. Rogers NJ, Daramola O, Targett GA, Hall BS. CD36 and intercellular adhesion molecule 1 mediate adhesion of developing Plasmodium falciparum gametocytes. Infect Immun. 1996;64:1480–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rogers NJ, Hall BS, Obiero J, Targett GA, Sutherland CJ. A model for sequestration of the transmission stages of Plasmodium falciparum: adhesion of gametocyte-infected erythrocytes to human bone marrow cells. Infect Immun. 2000;68:3455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Silvestrini F, Tiburcio M, Bertuccini L, Alano P. Differential adhesive properties of sequestered asexual and sexual stages of Plasmodium falciparum on human endothelial cells are tissue independent. PLoS One. 2012;7:e31567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Farfour E, Charlotte F, Settegrana C, Miyara M, Buffet P. The extravascular compartment of the bone marrow: a niche for Plasmodium falciparum gametocyte maturation? Malar J. 2012;11:285.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Neveu G, Dupuy F, Ladli M, Barbieri D, Naissant B, Richard C, Martins RM, Lopez-Rubio JJ, Bachmann A, Verdier F, Lavazec C. Plasmodium falciparum gametocyte-infected erythrocytes do not adhere to human primary erythroblasts. Sci Rep. 2018;8:17886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hermand P, Ciceron L, Pionneau C, Vaquero C, Combadiere C, Deterre P. Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1. Sci Rep. 2016;6:33786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Matthews K, Kalanon M, Chisholm SA, Sturm A, Goodman CD, Dixon MW, Sanders PR, Nebl T, Fraser F, Haase S, et al. The Plasmodium translocon of exported proteins (PTEX) component thioredoxin-2 is important for maintaining normal blood-stage growth. Mol Microbiol. 2013;89:1167–86.

    Article  CAS  PubMed  Google Scholar 

  84. Bessis M. Erythroblastic island, functional unity of bone marrow. Rev Hematol. 1958;13:8–11.

    CAS  PubMed  Google Scholar 

  85. Zhao B, Mei Y, Yang J, Ji P. Erythropoietin-regulated oxidative stress negatively affects enucleation during terminal erythropoiesis. Exp Hematol. 2016;44:975–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boehm D, Healy L, Ring S, Bell A. Inhibition of ex vivo erythropoiesis by secreted and haemozoin-associated Plasmodium falciparum products. Parasitology. 2018;145:1865–75.

    Article  CAS  PubMed  Google Scholar 

  87. Gautier EF, Ducamp S, Leduc M, Salnot V, Guillonneau F, Dussiot M, Hale J, Giarratana MC, Raimbault A, Douay L, Lacombe C, Mohandas N, Verdier F, Zermati Y, Mayeux P. Comprehensive proteomic analysis of human erythropoiesis. Cell Rep. 2016;16:1470–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kodippili GC, Spector J, Sullivan C, Kuypers FA, Labotka R, Gallagher PG, Ritchie K, Low PS. Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes. Blood. 2009;113:6237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Blanc L, Vidal M. Reticulocyte membrane remodeling: contribution of the exosome pathway. Curr Opin Hematol. 2010;17:177–83.

    CAS  PubMed  Google Scholar 

  90. Karayel O, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi AF, Weiss MJ, Mann M. Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Mol Syst Biol. 2020;16:e9813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leblond PF, LaCelle PL, Weed RI. Cellular deformability: a possible determinant of the normal release of maturing erythrocytes from the bone marrow. Blood. 1971;37:40–6.

    Article  CAS  PubMed  Google Scholar 

  92. Clark MA, Kanjee U, Rangel GW, Chery L, Mascarenhas A, Gomes E, Rathod PK, Brugnara C, Ferreira MU, Duraisingh MT. Plasmodium vivax infection compromises reticulocyte stability. Nat Commun. 2021;12:1629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Kelly Harding for English editing of the manuscript and Sylvie Perrot for the technical help for the electron microscopy images.

Funding

The authors acknowledge the financial support from the Cnrs, Inserm, the Fondation pour la Recherche Médicale (“Equipe FRM” grant DEQ20170336722) and the Laboratory of Excellence GR-Ex, reference ANR-11-LABX0051, funded by the program “Investissements d’avenir” of the French National Research Agency, reference ANR11-IDEX-0005-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavazec Catherine.

Ethics declarations

Conflict of Interest

Drs. Verdier, Neveu, and Lavazec declare no competing interests.

Human and Animal Studies and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors were performed in accordance with all applicable ethical standards including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Malaria

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frédérique, V., Gaëlle, N. & Catherine, L. Host Cell Remodeling by Plasmodium falciparum Sexual Stages. Curr. Tissue Microenviron. Rep. 3, 11–20 (2022). https://doi.org/10.1007/s43152-022-00034-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-022-00034-7

Keywords

Navigation