Skip to main content
Log in

Trypanosoma cruzi-secreted vesicles have acid and alkaline phosphatase activities capable of increasing parasite adhesion and infection

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trypanosoma cruzi virulence factors include molecules expressed on the cell surface as well as those secreted or shed into the extracellular medium. Phosphatase activities modulate different aspects of T. cruzi infection, although no studies to date addressed the presence and activity of phosphatases in vesicles secreted by this parasite. Here, we characterized acidic and alkaline secreted phosphatase activities of human-infective trypomastigote forms of T. cruzi from the Y strain and the CL-Brener clone. These are widely studied T. cruzi strains that represent “opposite ends of the spectrum” regarding both in vitro and in vivo behavior. Ecto-phosphatase activities were determined in live parasites, and secreted phosphatase activities were analyzed in soluble protein (SP) and vesicular membrane fractions (VFs) of parasite-conditioned medium. Our analysis using different phosphatase inhibitors strongly suggests that vesicles secreted by Y strain (VFY) and CL-Brener (VFCLB) trypomastigotes are derived mostly from the cell surface and from exosome secretion, respectively. Importantly, our results show that the acid phosphatase activities in vesicles secreted by trypomastigotes are largely responsible for the VF-induced increase in adhesion of Y strain parasites to host cells and also for the VF-induced increase in host cell infection by CL-Brener trypomastigotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adade CM, Chagas GS, Souto-Padrón T (2012) Apis mellifera venom induces different cell death pathways in Trypanosoma cruzi. Parasitology 139:1444–1461. doi:10.1017/S0031182012000790

    Article  CAS  PubMed  Google Scholar 

  • Affranchino JL, Ibañez CF, Luquetti AO, Rassi A, Reyes MB, Acina RA, Aslund L, Petterson U, Frasch ACC (1989) Identification of a Trypanosoma cruzi antigen that is shed during the acute phase of Chaga’s disease. Mol Biochem Parasitol 34:221–228

    Article  CAS  PubMed  Google Scholar 

  • Aparicio IM, Scharfstein J, Lima AP (2004) A new cruzipain-mediated pathway of human cell invasion by Trypanosoma cruzi requires trypomastigote membranes. Infect Immun 72:5892–5902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atyame Nten CM, Sommerer N, Rofidal V, Hirtz C, Rossignol M, Cuny G, Peltier JB, Geiger A (2010) Excreted/secreted proteins from trypanosome procyclic strains. J Biomed Biotechnol 2010:212817. doi:10.1155/2010/212817

    Article  PubMed Central  PubMed  Google Scholar 

  • Barnes RL, Shi H, Kolev NG, Tschudi C, Ullu E (2012) Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery. PLoS Pathog 8:e1002678. doi:10.1371/journal.ppat.1002678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barry JD (1979) Capping of variable antigen on Trypanosoma brucei, and its immunological and biological significance. J Cell Sci 37:287–302

    CAS  PubMed  Google Scholar 

  • Bartholomeu DC, Cerqueira GC, Leão ACA, Da Rocha WD, Pais FS, Macedo C, Djikeng A, Teixeira SMR, El-Sayed NM (2009) Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi. Nucleic Acid Res 37:3407–3417. doi:10.1093/nar/gkp172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bates PA, Dwyer DM (1987) Biosynthesis and secretion of acid phosphatase by Leishmania donovani promastigotes. Mol Biochem Parasitol 26:289–296

    Article  CAS  PubMed  Google Scholar 

  • Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez A, Choi H, Yoshida N, da Silveira JF, Almeida IC (2013) Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 12:883–897. doi:10.1021/pr300947g

    Article  CAS  PubMed  Google Scholar 

  • Bontempi E, Martinez J, Cazzulo JJ (1989) Subcellular localization of a cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol 33:43–47

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. An Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brenchley R, Tariq H, McElhinney H, Szoor B, Husley-Jones J, Stevens R, Matthews K, Tabernero L (2007) The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains. BMC Genom 8:434

    Article  Google Scholar 

  • Brener Z (1977) Intraspecific variations in Trypanosoma cruzi: two types of parasite populations presenting distinct characteristics. PAHO Sci Pub 347:11–21

    Google Scholar 

  • Carruthers VB, Giddings OK, Sibley LD (1999) Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol 1:225–235

    Article  CAS  PubMed  Google Scholar 

  • Cuervo P, De Jesus JB, Saboia-Vahia L, Mendonça-Lima L, Domont GB, Cupolillo E (2009) Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. J Proteomics 73:79–92. doi:10.1016/j.jprot.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  • Cunningham AC (2002) Parasitic adaptive mechanisms in infection by leishmania. Exp Mol Pathol 72:132–141

    Article  CAS  PubMed  Google Scholar 

  • De Souza W (1984) Cell biology of Trypanosoma cruzi. Int Rev Cytol 86:197–283

    Article  PubMed  Google Scholar 

  • De Souza W, Sant’Anna C, Cunha e Silva NL (2009) Electron microscopy and cytochemical analysis of the endocytic pathway of pathogenic protozoa. Prog Histochem Cytochem 44:67–124. doi:10.1016/j.proghi.2009.01.001

    Article  PubMed  Google Scholar 

  • Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L (2012) Unconventional protein secretion. Trends Plant Sci 17:606–615. doi:10.1016/j.tplants.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  • Drakakaki G, Dandekar A (2013) Protein secretion: how many secretory routes does a plant cell have? Plant Sci 203–204:74–78. doi:10.1016/j.plantsci.2012.12.017

    Article  PubMed  Google Scholar 

  • Dutra PM, Couto LC, Lopes AH, Meyer-Fernandes JR (2006) Characterization of ecto-phosphatase activities of Trypanosoma cruzi: a comparative study between Colombiana and Y strains. Acta Trop 100:88–95

    Article  CAS  PubMed  Google Scholar 

  • Fernandes AC, Soares DC, Saraiva EM, Meyer-Fernandes JR, Souto-Padrón T (2013) Different secreted phosphatase activities in Leishmania amazonensis. FEMS Microbiol Lett 340:117–128. doi:10.1111/1574-6968.12080

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phoshporous. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Furuya T, Zhong L, Meyer-Fernandes JR, Lu HG, Moreno SN, Docampo R (1998) Ecto-protein tyrosine phosphatase activity in Trypanosoma cruzi infective stages. Mol Biochem Parasitol 92:339–348

    Article  CAS  PubMed  Google Scholar 

  • Gallo G, Ramos TCP, Tavares F, Rocha AA, Machi E, Schenkman S, Bahia D, Pesquero JB, Würtele M (2011) Biochemical characterization of a protein tyrosine phosphatase from Trypanosoma cruzi involved in metacyclogenesis and cell invasion. Biochem Biophys Res Commun 408:427–431. doi:10.1016/j.bbrc.2011.04.038

    Article  CAS  PubMed  Google Scholar 

  • Garcia Silva MR, Tosar JP, Frugier M, Pantano S, Bonilla B, Esteban L, Serra E, Rovira C, Robello C, Cayota A (2010) Cloning, characterization and subcellular localization of a Trypanosoma cruzi argonaute protein defining a new subfamily distinctive of trypanosomatids. Gene 466:26–35. doi:10.1016/j.gene.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Silva MR, das Neves RF, Cabrera-Cabrera F, Sanguinetti J, Medeiros LC, Robello C, Naya H, Fernandez-Calero T, Souto-Padron T, de Souza W, Cayota A, (2014) Extracellular vesicles shed by Trypanosoma cruzi are linked to small RNA pathways, life cycle regulation, and susceptibility to infection of mammalian cells. Parasitol Res 113:285–304. doi:10.1007/s00436-013-3655-1

    Article  PubMed  Google Scholar 

  • Geiger A, Hirtz C, Bécue T, Bellard E, Centeno D, Gargani D, Rossignol M, Cuny G, Peltier JB (2010) Exocytosis and protein secretion in Trypanosoma. BMC Microbiol 10:20. doi:10.1186/1471-2180-10-20

    Article  PubMed Central  PubMed  Google Scholar 

  • Gomes M, Lopes AH, Meyer-Fernandes JR (2011) Possible roles of ectophosphatases in host-parasite interactions. J Parasitol Res 2011:479146. doi:10.1155/2011/479146

    Article  PubMed Central  PubMed  Google Scholar 

  • Gonçalves MF, Umezawa ES, Katzin AM, De Souza W, Alves MJM, Zingales B, Colli W (1991) Trypanosoma cruzi: shedding of surface antigens as membrane vesicles. Exp Parasitol 72:43–53

    Article  PubMed  Google Scholar 

  • Gottlieb M, Dwyer DM (1981) Leishmania donovani: surface membrane acid phosphatase activity of promastigotes. Exp Parasitol 52:117–128

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb M, Dwyer DM (1982) Identification and partial characterization of an extracellular acid phosphatase activity of Leishmania donovani promastigotes. Mol Cell Biol 2:76–81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  CAS  PubMed  Google Scholar 

  • Katakura K, Kobayashi A (1988) Acid phosphatase activity of virulent and avirulent clones of Leishmania donovani promastigotes. Infect Immun 56:2856–2860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krettli AU, Weisz-Carrington P, Nussenzweig RS (1979) Membrane-bound antibodies to bloodstream Trypanosoma cruzi in mice: strain differences in susceptibility to complement-mediated lysis. Clin Exp Immunol 37:416–423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645–2655. doi:10.1159/000346770

    Article  CAS  PubMed  Google Scholar 

  • Lambertz U, Silverman JM, Nandan D, McMaster WR, Clos J, Foster LJ, Reiner NE (2012) Secreted virulence factors and immune evasion in visceral leishmaniasis. J Leukoc Biol 91:887–899. doi:10.1189/jlb.0611326

    Article  CAS  PubMed  Google Scholar 

  • Lau KH, Farley JR, Baylink DJ (1989) Phosphotyrosyl protein phosphatases. Biochem J 257:23–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim DC, Cooke BM, Doerig C, Saeij JPJ (2012) Toxoplasma and Plasmodium protein kinases: roles in invasion and host cell remodeling. Int J Parasitol 42:21–32. doi:10.1016/j.ijpara.2011.11.007

  • Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920. doi:10.1016/j.jprot.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012) ExoCarta 2012: database of exosomal proteins. RNA Lipids Nucleic Acids Res 40:D1241–D1244. doi:10.1093/nar/gkr828

    Article  CAS  Google Scholar 

  • Melo RC, Brener Z (1978) Tissue tropism of different Trypanosoma cruzi strains. J Parasitol 64:475–482

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Fernandes JR, da Silva-Neto MA, dos Soares MS, Fernandes E, Vercesi AE, de Oliveira MM (1999) Ecto-phosphatase activities on the cell surface of the amastigote forms of Trypanosoma cruzi. Z Naturforsch C 54:977–984

    CAS  PubMed  Google Scholar 

  • Morales-Neto R, Hulshof L, Ferreira CV, Gadelha FR (2009) Distinct phosphatase activity profiles in two strains of Trypanosoma cruzi. J Parasitol 95:1525–1531. doi:10.1645/GE-1899.1

    Article  CAS  PubMed  Google Scholar 

  • Mortara RA, Minelli LM, Vandekerckhove F, Nussenzweig V, Ramalho-Pinto FJ (2001) Phosphatidylinositol-specific phospholipase C (PI-PLC) cleavage of GPI-anchored surface molecules of Trypanosoma cruzi triggers in vitro morphological reorganization of trypomastigotes. J Eukaryot Microbiol 48:27–37

    Article  CAS  PubMed  Google Scholar 

  • Murta AC, Persechini PM, Souto-Padrón T, De Souza W, Guimarães JA, Scharfstein J (1990) Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol 43:27–38

    Article  CAS  PubMed  Google Scholar 

  • Nagajyothi F, Machado FS, Burleigh BA, Jelicks LA, Scherer PE, Mukherjee S, Lisanti MP, Weiss LM, Garg NJ, Tanowitz HB (2012) Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell Microbiol 14:634–643. doi:10.1111/j.1462-5822.2012.01764.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagakura K, Tachibana H, Kaneda Y (1985) Alteration of cell surface acid phosphatase concomitante with the morphological transformation in Trypanosoma cruzi. Comp Biochem Physiol B 81:815–817

  • Overath P, Engstler M (2004) Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol 53:735–744

    Article  CAS  PubMed  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. doi:10.1083/jcb.201211138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Risso MG, Garbarino GB, Mocetti E, Campetella O, González Cappa SM et al (2004) Differential expression of a virulence factor, the trans-sialidase, by the main Trypanosoma cruzi phylogenetic lineages. J Infect Dis 189:2250–2259

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues CO, Dutra PM, Barros FS, Souto-Padrón T, Meyer-Fernandes JR, Lopes AH (1999) Platelet-activating factor induction of secreted phosphatase activity in Trypanosoma cruzi. Biochem Biophys Res Commun 266:36–42

    Article  CAS  PubMed  Google Scholar 

  • Santana JM, Grellier P, Schrével J, Teixeira AR (1997) A Trypanosoma cruzi-secreted 80 kDa proteinase with specificity for human collagen types I and IV. Biochem J 325:129–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santarém N, Racine G, Silvestre R, Cordeiro-da-Silva A, Ouellette M (2013) Exoproteome dynamics in Leishmania infantum. J Proteomics 84:106–118. doi:10.1016/j.jprot.2013.03.012

    Article  PubMed  Google Scholar 

  • Schmid-Hempel P (2008) Parasite immune evasion: a momentous molecular war. Trends Ecol Evol 23:318–326. doi:10.1016/j.tree.2008.02.011

    Article  PubMed  Google Scholar 

  • Seyfang A, Mecke D, Duszenko M (1990) Degradation, recycling, and shedding of Trypanosoma brucei variant surface glycoprotein. J Protozool 37:546–552

    Article  CAS  PubMed  Google Scholar 

  • Silverman JM, Reiner NE (2011a) Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol 13:1–9. doi:10.1111/j.1462-5822.2010.01537.x

    Article  CAS  PubMed  Google Scholar 

  • Silverman JM, Reiner NE (2011b) Leishmania exosomes deliver preemptive strikes to create an environment permissive for early infection. Front Cell Infect Microbiol 1:26. doi:10.3389/fcimb.2011.00026

    PubMed Central  PubMed  Google Scholar 

  • Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, Foster LJ, Reiner NE (2008) Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 9:R35. doi:10.1186/gb-2008-9-2-r35

    Article  PubMed Central  PubMed  Google Scholar 

  • Silverman JM, Clos J, de Oliveira CC, Shirvani O, Fang Y, Wang C, Foster LJ, Reiner NE (2010a) An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 123:842–852. doi:10.1242/jcs.056465

    Article  CAS  PubMed  Google Scholar 

  • Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, Kelly I, Lynn MA, McMaster WR, Foster LJ, Levings MK, Reiner NE (2010b) Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol 185:5011–5022. doi:10.4049/jimmunol.1000541

    Article  CAS  PubMed  Google Scholar 

  • Singla N, Khuller GK, Vinayak VK (1992) Acid phosphatase activity of promastigotes of Leishmania donovani: a marker of virulence. FEMS Microbiol Lett 94:221–225

    Article  CAS  Google Scholar 

  • Szöor B, Wilson J, McElhinney H, Tabernero L, Matthews KR (2006) Protein tyrosine phosphatase TbPTP1: a molecular switch controlling life cycle differentiation in trypanosomes. J Cell Biol 175:293–303

    Article  PubMed Central  PubMed  Google Scholar 

  • Théry C (2011) Exosomes: secreted vesicles and intercellular communications F1000. Biol Rep 73:1907–1920. doi:10.1016/j.jprot.2010.06.006

    Google Scholar 

  • Trocoli Torrecilhas AC, Tonelli RR, Pavanelli WR, da Silva JS, Schumacher RI, de Souza W, Silva E, de Almeida NC, Abrahamsohn I, Colli W, Manso Alves MJ (2009) Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect 11:29–39. doi:10.1016/j.micinf.2008.10.003

    Article  CAS  PubMed  Google Scholar 

  • Vannier-Santos MA, Martiny A, Meyer-Fernandes JR, de Souza W (1995) Leishmanial protein kinase C modulates host cell infection via secreted acid phosphatase. Eur J Cell Biol 67:112–119

    CAS  PubMed  Google Scholar 

  • Yokoyama-Yasunaka JKU, Pral EMF, Oliveira OC Jr, Alfieri SC, Stolf AMS (1994) Trypanosoma cruzi: identification of proteinases in shed components of trypomastigote forms. Acta Trop 57:307–315

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Hong-Gang L, Moreno SNJ, Docampo R (1998) Tyrosine phosphate hydrolysis of host proteins by Trypanosoma cruzi is linked to cell invasion. FEMS Microbiol Lett 161:15–20

    Article  CAS  PubMed  Google Scholar 

  • Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG, Second Satellite Meeting (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104:1051–1054

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Venício Féo da Veiga and Tarcísio Corrêa for their valuable technical assistance. This work was supported by the Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thais Souto-Padrón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig S1

Flow cytometry viability assay. Control trypomastigotes (CTY and CTCLB) and parasites recovered from shedding assays (STY and STCLB) were incubated with propidium iodide (PI) and analysed by flow cytometry. No significant loss of cell viability of trypomastigotes was observed after shedding period (3h) comparing with the negative control (CT without PI) and the positive control (CTtreated with0.1% Saponin and incubated withPI). (TIFF 226 kb)

High resolution image (GIF 93 kb)

Supplementary Fig S2

Comparison of Mg2+-independent acid (A) and alkaline (B) phosphatase activities form T. cruzi trypomastigotes of the Y strain (black) and the CL-Brenerclone (white) using p-NPP (5mM) as a substrate. The reaction was performedfor 1h at 26 °C, at pH values of 6.5 and 8.5. All results represent mean values ± SE from at least three independent experiments. Different letters represent statistically significant differencesbetween groups (p≤ 0.05). (TIFF 298 kb)

High resolution image (GIF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, R.F.C., Fernandes, A.C.S., Meyer-Fernandes, J.R. et al. Trypanosoma cruzi-secreted vesicles have acid and alkaline phosphatase activities capable of increasing parasite adhesion and infection. Parasitol Res 113, 2961–2972 (2014). https://doi.org/10.1007/s00436-014-3958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3958-x

Keywords

Navigation