Skip to main content
Log in

Geographic variation in caste ratio of trematode colonies with a division of labour reflect local adaptation

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Similarly to the division of labour in social insects, castes of morphologically distinct individuals exist within colonies of some species of parasitic trematodes. These colonies occur in the first intermediate host of the trematode’s complex life cycle and are composed of clonal individuals. Individuals of the reproductive caste have significantly larger bodies while non-reproductive individuals are small and appear to be specialised for defence against co-infecting trematode colonies. In parallel with colony organisation of social insects, demographic traits such as the proportion of the small, non-reproducing individuals relative to the large, reproducing individuals and colony size are expected to vary and adjust to local conditions. In the case of colonies from geographically and potentially genetically distinct populations, this variation is hypothesised to become fixed by evolutionary divergence, as reported in social insect studies. In this study, the adaptive demography theory was further tested by looking at caste ratio and colony organisation of Philophthalmus sp. (a parasitic trematode with a recently discovered division of labour) colonies from geographically distinct populations. Results indicate that the caste ratio from geographically distinct Philophthalmus sp. colonies differs; the proportion of small, defensive individuals is higher in colonies from the location where the risk of competition is highest. This is suggestive of local adaptation, as caste ratios do not change over time under standardised laboratory conditions. This is the first evidence to support the adaptive demography theory in a species with a division of labour other than social insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bates D, Maechler M, Bolker B (2011) Linear mixed-effects models using S4 classes. http://cran.R-project.org/package=lme4

  • Bershers SN, Traniello JFA (1994) The adaptiveness of worker demography in the Attine ant Trachymyrmex septentrionalis. Ecology 75:763–775

    Article  Google Scholar 

  • Calabi P, Traniello JFA (1989) Social organization in the ant Pheidole dentata. Behav Ecol Sociobiol 24:69–78

    Article  Google Scholar 

  • Chambers J M (1992) Linear models. In: Chambers J M, Hastie T J (eds) Statistical Models in S.Wadsworth & Brooks/Cole

  • Dornhaus A, Powell S, Bengston S (2012) Group size and its effects on collective organization. Annu Rev Entomol 57:123–141

    Article  CAS  PubMed  Google Scholar 

  • Duarte A, Weissing FJ, Pen I, Keller L (2011) An evolutionary perspective on self-organized division of labor in social insects. Ann Rev Ecol Evol Syst 42:91–110

    Article  Google Scholar 

  • Duffy JE (1996) Eusociality in a coral-reef shrimp. Nature 381:512–514

    Article  CAS  Google Scholar 

  • Dybdahl MF, Lively CM (1996) The geography of coevolution: comparative population structures for a snail and its trematode parasite. Evolution 50:2264–2275

    Article  Google Scholar 

  • Francis L (1976) Social organization within clones of the sea anemone Anthopleura elegantissima. Biol Bull 150:361–376

    Article  Google Scholar 

  • Fucini S, Di Bona V, Mola F, Piccaluga C, Lorenzi M (2009) Social wasps without workers: geographic variation of caste expression in the paper wasp Polistes biglumis. Insect Soc 56:347–358

    Article  Google Scholar 

  • Galaktionov K V, Dobrovolskij A A (2003) The biology and evolution of trematodes. Kluwer Academic Publishers

  • Harvey JA, Corley LS, Strand MR (2000) Competition induces adaptive shifts in caste ratios of a polyembryonic wasp. Nature 406:183–186

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa E (1997) The optimal caste ratio in polymorphic ants: estimation and empirical evidence. Amer Nat 149:706–722

    Article  Google Scholar 

  • Hechinger RF, Wood AC, Kuris AM (2011) Social organization in a flatworm: trematode parasites form soldier and reproductive castes. P Roy Soc B-Biol Sci 278:656–665

    Article  Google Scholar 

  • Hendrickson MA, Curtis LA (2002) Infrapopulation sizes of co-occuring trematodes in the snail Ilyanassa obsoleta. J Parasitol 88:884–889

    Article  PubMed  Google Scholar 

  • Holldobler B, Wilson E O (2009) The Superogranism, First ed.W.W. Norton and Company

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Howell M (1965) Notes on a potential trematode parasite of man in New Zealand. Tuatara 13:182–184

    Google Scholar 

  • Jarvis JU (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212:571–573

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Poulin R (2013) Caste ratios affect the reproductive output of social trematode colonies. J Evolutionary Biol 26:509–516

    Article  CAS  Google Scholar 

  • Keeney DB, Boessenkool S, King TM, Leung TL, Poulin R (2008a) Effects of interspecific competition on asexual proliferation and clonal genetic diversity in larval trematode infections of snails. Parasitology 135:741–747

    Article  CAS  PubMed  Google Scholar 

  • Keeney DB, Bryan-Walker K, King TM, Poulin R (2008b) Local variation of within-host clonal diversity coupled with genetic homogeneity in a marine trematode. Mar Biol 154:183–190

    Article  Google Scholar 

  • Keeney DB, King TM, Rowe DL, Poulin R (2009) Contrasting mtDNA diversity and population structure in a direct-developing marine gastropod and its trematode parasites. Mol Ecol 18:4591–4603

    Article  PubMed  Google Scholar 

  • Koprivnikar J, Poulin R (2009) Interspecific and intraspecific variation in cercariae release. J Parasitol 95:14–19

    Article  CAS  PubMed  Google Scholar 

  • Lei F, Poulin R (2011) Effects of salinity on multiplication and transmission of an intertidal trematode parasite. Mar Biol 158:995–1003

    Article  Google Scholar 

  • Leung TL, Poulin R (2011) Small worms, big appetites: ratios of different functional morphs in relation to interspecific competition in trematode parasites. Int J Parasitol 41:1063–1068

    Article  PubMed  Google Scholar 

  • Lloyd MM (2013) Sociality in parasite colonies: a division of labour in the trematode Philophthalmus sp. Diss University of Otago

  • Lloyd MM, Poulin R (2012) Fitness benefits of a division of labour in parasitic trematode colonies with and without competition. Int J Parasitol 42:939–946

    Article  PubMed  Google Scholar 

  • Lloyd MM, Poulin R (2013) Reproduction and caste ratios under stress in trematode colonies with a division of labour. Parasitology 140:825–832

    Article  PubMed  Google Scholar 

  • Lloyd MM, Poulin R (2014) Multi-clone infections and the impact of intraspecific competition on trematode colonies with a division of labour. Parasitology 141:304–310

    Article  PubMed  Google Scholar 

  • Martorelli SR, Fredensborg BL, Mouritsen KN, Poulin R (2004) Description and proposed life cycle of Maritrema novaezealandensis n. sp (Microphallidae) parasitic in red-billed gulls, Larus novaehollandiae scopulinus, from Otago Harbour, South Island, New Zealand. J Parasitol 90:272–277

    Article  PubMed  Google Scholar 

  • Martorelli SR, Fredensborg BL, Leung TL, Poulin R (2008) Four trematode cercariae from the New Zealand intertidal snail Zeacumantus subcarinatus (Batillariidae). New Zeal J Zool 35:73–84

    Article  Google Scholar 

  • McGlynn T, Owen J (2002) Food supplementation alters caste allocation in a natural population of Pheidole flavens, a dimorphic leaf-litter dwelling ant. Insect Soc 49:8–14

    Article  Google Scholar 

  • Miura O (2012) Social organization and caste formation in three additional parasitic flatworm species. Mar Ecol-Prog Ser 465:119–127

    Article  Google Scholar 

  • Miura O, Torchin ME, Kuris AM, Hechinger RF, Chiba S (2006) Introduced cryptic species of parasites exhibit different invasion pathways. P Natl Acad Sci 103:19818–19823

    Article  CAS  Google Scholar 

  • Neal AT, Poulin R (2012) Substratum preference of Philophthalmus sp. cercariae for cyst formation under natural and experimental conditions. J Parasitol 98:293–298

    Article  PubMed  Google Scholar 

  • Newcombe RG (1998a) Interval estimation for the difference between independent proportions: comparision of evelen methods. Stat Med 17:873–890

    Article  CAS  PubMed  Google Scholar 

  • Newcombe RG (1998b) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17:857–890

    Article  CAS  PubMed  Google Scholar 

  • Nollen PM (1995) Taxonomy and biology of philophthalmid eyeflukes. Adv Parasitol 36:205–269

    Article  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton

    Google Scholar 

  • Passera L (1977) Production des soldats dans les sociétés sortant d'hibernation chez la fourmi Pheidole pallidula (Nyl.)(Formicidae, Myrmicinae). Insect Soc 24:131–146

    Article  Google Scholar 

  • Passera L, Roncin E, Kaufmann B, Keller L (1996) Increased soldier production in ant colonies exposed to intraspecific competition. Nature 379:630–631

    Article  CAS  Google Scholar 

  • Poulin R (2007) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • R Development Core Team 2011 R: a language and environment for statistical computing. (R Foundation for Statistical Computing, ed.). pp., Vienna, Austria

  • Shingleton AW, Foster WA (2000) Ant tending influences soldier production in a social aphid. P Roy Soc B-Biol Sci 267:1863–1868

    Article  CAS  Google Scholar 

  • Simpson C (2012) The evolutionary history of division of labour. P Roy Soc B-Biol Sci 279:116–121

    Article  Google Scholar 

  • Sousa WP (1992) Interspecific interactions among larval trematode parasites of freshwater and marine snails. Am Zool 32:583–592

    Google Scholar 

  • West AF (1961) Studies on the biology of Philophthalmus gralli Mathis and Leger, 1910 (Trematoda: Digenea). Am Midl Nat 66:363–383

    Article  Google Scholar 

  • Wilkinson GN, Rogers CE (1973) Symbolic descriptions of factorial models for analysis of variance. Appl Stat 22:392–399

    Article  Google Scholar 

  • Wilson EB (1927) Probable inference, the law of succession, and statistical inference. J Am Stat Assoc 22:209–212

    Article  Google Scholar 

  • Wilson EO (1983) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behav Ecol Sociobiol 14:47–54

    Article  Google Scholar 

  • Wilson EO (1985) The sociogenesis of insect colonies. Science 228:1489–1495

    Article  CAS  PubMed  Google Scholar 

  • Yang AS, Martin CH, Nijhout HF (2004) Geographic variation of caste structure among ant populations. Curr Biol 14:514–519

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Nicholas Wood for field assistance. This project was funded by the Department of Zoology University of Otago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie M. Lloyd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloyd, M.M., Poulin, R. Geographic variation in caste ratio of trematode colonies with a division of labour reflect local adaptation. Parasitol Res 113, 2593–2602 (2014). https://doi.org/10.1007/s00436-014-3913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3913-x

Keywords

Navigation