Skip to main content

Advertisement

Log in

Chemical composition and larvicidal activity of plant extracts from Clausena dentata (Willd) (Rutaceae) against dengue, malaria, and filariasis vectors

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes in the larval stage are attractive targets for pesticides because mosquitoes breed in water, and thus, it is easy to deal with them in this habitat. The use of conventional pesticides in the water sources, however, introduces many risks to people and/or the environment. Natural pesticides, especially those derived from plants, are more promising in this aspect. Aromatic plants and their essential oils are very important sources of many compounds that are used in different respects. Insecticides of botanical origin may serve as suitable alternative to chemical insecticides. Acetone, chloroform, ethyl acetate, methanol, and petroleum benzine leaf extracts of Clausena dentata were tested against the fourth instar larvae of Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti (Diptera: Culicidae). Larval mortality was observed after 24 h of exposure. The highest larval mortality was found in acetone leaf extract, C. quinquefasciatus (LC50 = 0.150278 mg/ml; LC90 = 7.302613 mg/ml), A. aegypti (LC50 = 0.169495 mg/ml; LC90 = 1.10034 mg/ml), and A. stephensi (LC50 = 0.045684 mg/ml; LC90 = 0.045684 mg/ml). GC–MS analysis of plant extracts of acetone solvent revealed 16 compounds, of which the major compounds were benzene,1,2,3-trimethoxy-5-(2-propenyl) (14.97 %), Z,Z-6,28-heptatriactontadien-2-one (6.81 %), 2-allyl-4-methylphenol (28.14 %), 2-allyl-4-methylphenol (17.34 %), and 2,6,10,14,18,22-tetracosahexaene, 2,6,10,15,19,23-hexamethyl (10.35 %). Our result shows acetone leaf extracts of C. dentata have the potential to be used as an ideal eco-friendly approach for mosquito control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal SR (1981) Trees, flowers and fruits in Indian folk-songs, folk-proverbs and folk-tales. In: Jain SK (ed) Glimpses of Indian ethnobotany. Oxford and IBH Publishing Co., New Delhi, pp 3–12

    Google Scholar 

  • Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amerasinghe PH, Amerasinghe FP (1999) Multiple host feeding in field populations of Anopheles culicifacies and An. subpictus in Sri Lanka. Med Vet Entomol 13:124–131

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Razdan RK, Tandon M, Vasudevan P (2000) Larvicidal and repellent actions of Dalbergia sissoo Roxb. (F. Leguminoseae) oil against mosquitoes. Bioresour Technol 73:207–211

    Article  CAS  Google Scholar 

  • Bagavan A, Rahuman AA, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103:223–229

    Article  CAS  PubMed  Google Scholar 

  • Batish DR, Singh HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. For Ecol Manag 256:2166–2174

    Article  Google Scholar 

  • Bernhard L, Bernhard P, Magnussen P (2003) Management of patients with lymphodema caused by filariasis in northeastern Tanzania. Altern Approach Physiother 89:743–749

    Google Scholar 

  • Bowers WL, Sener B, Evans PH (1995) Activity of Turkish medicinal plants against mosquitoes Aedes aegypti and Anopheles gambiae. Insect Sci Appl 16:339–342

    Google Scholar 

  • Cheng SS, Chua MT, Chang EH, Huang CG, Chen WJ, Chang ST (2009) Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour Technol 100:465–470

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge Univ. Press, Cambridge, UK

  • Ghosh A, Chowdhury N, Chandra G (2008) Laboratory evaluation of a phytosteroid compound of mature leaves of Day Jasmine (Solanaceae: Solanales) against larvae of Culex quinquefasciatus (Diptera: Culicidae) and non-target organisms. Parasitol Res 103:271–277

    Article  PubMed  Google Scholar 

  • Gleiser RM, Zygadlo JA (2009) Essential oils as potential bioactive compounds against mosquitoes. Recent Adv Phytochem 37:53–76

    Google Scholar 

  • Govindachari TR, Pai BR, Subramaniam PS, Muthukumaraswamy N (1968) Coumarins of Clausena dentata (Willd.) R. and S. Tetrahedron 24:753–757

    Article  Google Scholar 

  • Jirakanjanakit NP, Rongnoparut S, Saengtharatip T, Chareonviriyaphap S, Duchon CB, Yoksan S (2007) Insecticide susceptible/resistance status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand during 2003–2005. J Econ Entomol 100:545–550

    Article  PubMed  Google Scholar 

  • Kannathasan K, Senthilkumar A, Venkatesalu V, Chandrasekaran M (2008) Larvicidal activity of fatty acid methyl esters of Vitex species against Culex quinquefasciatus. Parasitol Res 103:999–1001

    Article  PubMed  Google Scholar 

  • Kumar A, Valecha N, Jain T, Dash AP (2007) Burden of malaria in India: retrospective and prospective view. Am J Trop Med Hyg 77:69–78

    PubMed  Google Scholar 

  • Lee SE, Kim JE, Lee HS (2001) Insecticide resistance in increasing interest. Agric Chem Biotechnol 44:105–112

    CAS  Google Scholar 

  • Macedo ME, Consoli RAGB, Grandi TSM, Anjos AMG, Oliveira AB, Mendes NM, Queiroz RO, Zani CL (1997) Screening of Asteraceae (Compositae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera: Culicidae). Mem Inst Oswaldo Cruz 92:565–570

    Article  CAS  PubMed  Google Scholar 

  • Natarajan K, Valluri HB, Guan XM, Dwivedi C (2003) Chemopreventive effects of alpha-santalol on UVB-induced skin carcinogenesis. FASEB J 17:4–5

    Article  Google Scholar 

  • O’ Malley M (1997) Clinical evaluation of pesticide exposure and poisonings. Lancet 349:1161–1166

    Article  Google Scholar 

  • Okugawa H, Ueda R (1995) Effect of alpha-santalol and beta-santalol from sandalwood on the central nervous system in mice. Phytomedicine 2:119–126

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Venkatesan P, Gopalakrishnan G (2008) Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitol Res 103:1383–1390

    Article  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2010) Chemical composition and larvicidal activity of leaf essential oil from Clausena dentata (Willd) M. Roam. (Rutaceae) against the chikungunya vector, Aedes aegypti Linn. (Diptera: Culicidae). J Asia Pac Entomol 13:107–109

    Article  CAS  Google Scholar 

  • Rao BSS, Subramanian KS (1934) The occurrence of furan derivatives in volatile oils. Proc Indian Acad Sci 1:189–200

    Google Scholar 

  • Roger CR (1997) The potential of botanical essential oils for insect pest control. Integr Pest Manag Rev 2:25–34

    Article  Google Scholar 

  • Rueda LM (2008) Global diversity of mosquitoes (Insecta: Diptera: Culicidae) in freshwater. Dev Hydrobiol 595:477–487

    Article  Google Scholar 

  • Sarwar M, Ahmad N, Toufiq M (2009) Host plant resistance relationships in chickpea (Cicer arietinum L.) against gram pod borer (Helicoverpa armigera Hubner). Pak J Bot 41:3047–3052

    Google Scholar 

  • Scott TW, Chow E, Strickman D, Kittayapong P, Writz RA, Lorenz LH, Edman JD (1993) Blood feeding pattern of Aedes aegypti (Diptera: Culicidae) collect in a rural Thai village. J Med Entomol 30:922–927

    CAS  PubMed  Google Scholar 

  • Senthilkumar A, Kannathasan K, Venkatesalu V (2008) Chemical constituents and larvicidal property of the essential oil of Blumea mollis (D. Don) Merr against Culex quinquefasciatus. Parasitol Res 103:959–962

    Article  PubMed  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2006) Phytoextract-induced developmental deformities in malaria vector. Bioresour Technol 97:1599–1604

    Article  CAS  PubMed  Google Scholar 

  • Sosan MB, Adewoyin FB, Adewunmi CO (2001) Larvicidal properties of three indigenous plant oils on the mosquito Aedes aegypti. Nigerian J Nat Prod Med 5:30–33

  • Subba Rao GSR, Ravindranath B, Sashi Kumar VP (1984) Volatile constituents of Clausena willdenovii: structures of the furanoterpenes α-clausenan, diclausenan A and diclausenan B. Phytochem 23:399–340

  • Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113:875–880

    Article  PubMed  Google Scholar 

  • Sujatha CH, Vasuki V, Mariappan T, Kalyanasundaram M, Das PK (1988) Evaluation of plant extracts for biological activity against mosquitoes. Int Pest Control 30:122–124

  • Tawatsin A, Asavadachanukorn P, Thavara U et al (2006) Repellency of essential oils extracted from plants in Thailand against four mosquito vectors and oviposition deterrent effects against Aedes Aegypti. Southeast Asian J Trop Med Pub Health 37(5):915–931

  • Thomas TG, Rao S, Lal S (2004) Mosquito larvicidal properties of an indigenous plant, Ipomoea cairica Linn. Jap J Infect Dis 57:176–177

  • Trongtokit Y, Rongsriyam Y, Komalamiosra N, Apiwathnasnrn C (2005) Comparative repellency of 38 essential oils against mosquito bites. Phytother Res 19:303–309

    Article  CAS  PubMed  Google Scholar 

  • Tsoukatou M, Tsitsimpikou C, Vagias C, Roussis V (2001) Chemical intra-Mediterranean variation and insecticidal activity of Crithmum maritimum. Z Naturforsch 56:211–215

    CAS  Google Scholar 

  • World Health Organization (1996) Report of the WHO informal consultation on the evaluation and testing of insecticides CTD/WHO PES/IC/96.1. Geneva: WHO; 1996. 69

  • World Health Organization (2007) 10 Facts on malaria. http://www.who.int/features/factfiles/malaria/en/index.html

  • Yang YC, Lee SG, Lee HK, Kim MK, Lee SH, Lee HS (2002) A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. J Agric Food Chem 50:3765–3767

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the VIT, Vellore, for providing the facility to carry out GC–MS analysis work. The financial support is provided by Indian Council of Medical Research- Vector Science Forum Major Research Project (F.No. 5/8-7 (335) V-2011-ECD-II, 21/06/2013). We also thank the Department of Biotechnology, Periyar University, Salem, for providing the infrastructural facility for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthugoundar Subramanian Shivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjari, M.S., Karthi, S., Ramkumar, G. et al. Chemical composition and larvicidal activity of plant extracts from Clausena dentata (Willd) (Rutaceae) against dengue, malaria, and filariasis vectors. Parasitol Res 113, 2475–2481 (2014). https://doi.org/10.1007/s00436-014-3896-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3896-7

Keywords

Navigation