Skip to main content

Advertisement

Log in

Further insights into biological evaluation of new anti-Trypanosoma cruzi 5-nitroindazoles

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Twelve molecules from a series of 35 new 5-nitroindazole derivatives, selected from a successful primary screening on Trypanosoma cruzi epimastigotes, have been evaluated against intracellular amastigotes according to the previous results of their trypanocidal activity and unspecific cytotoxicity. 2-Benzyl-1-propyl (22), 2-benzyl-1-isopropyl (23), and 2-benzyl-1-butyl (24) 5-nitroindazolin-3-ones have inhibited the growth of amastigotes similarly to the reference drugs benznidazole and nifurtimox, inducing complete growth inhibition at concentrations lower than 8 μM (IC50 < 5 μM) and accomplishing great selectivity indexes on the intracellular form of the parasite (SI > 30). Further in vivo assays were developed only for two of the most active molecules (22 and 24), reaching significant reductions in parasitemia levels (52 % and 77 %, respectively) after their oral administration to infected mice. In addition, none of the mice in experimental and benznidazole groups died, unlike in the control group which is only treated with the vehicle. The trypanocidal properties found in some of the 5-nitroindazole derivatives assayed in the present work represent an interesting contribution to the urgent need for searching new antichagasic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrade AL, Martelli CM, Oliveira RM, Silva SA, Aires AI, Soussumi LM, Covas DT, Silva LS, Andrade JG, Travassos LR, Almeida IC (2004) Short report: benznidazole efficacy among Trypanosoma cruzi-infected adolescents after a six-year follow-up. Am J Trop Med Hyg 71:594–597

    CAS  PubMed  Google Scholar 

  • Arán VJ, Ochoa C, Boiani L, Buccino P, Cerecetto H, Gerpe A, González M, Montero D, Nogal JJ, Gómez-Barrio A, Azqueta A, López de Cerain A, Piro OE, Castellano EE (2005) Synthesis and biological properties of new 5-nitroindazole derivatives. Bioorg Med Chem 13:3197–3207

    Article  PubMed  Google Scholar 

  • Arán VJ, Kaiser M, Dardonville C (2012) Discovery of nitroheterocycles active against African trypanosomes. In vitro screening and preliminary SAR studies. Bioorg Med Chem Lett 22:4506–4516

    Article  PubMed  Google Scholar 

  • Bahia MT, de Andrade IM, Martins TAF, do Nascimento AFDS, de Figuereido Diniz L, Caldas IS, Talvani A, Trunz BB, Torreele E, Ribeiro I (2012) Fexinidazole: a potential new drug candidate for Chagas disease. PLoS Negl Trop Dis 6:e1870

  • Boiani L, Gerpe A, Arán VJ, Torres de Ortiz S, Serna E, Vera de Bilbao N, Sanabria L, Yaluff G, Nakayama H, Rojas de Arias A, Maya JD, Morello JA, Cerecetto H, González M (2009) In vitro and in vivo antitrypanosomatid activity of 5-nitroindazoles. Eur J Med Chem 44:1034–1040

    Article  CAS  PubMed  Google Scholar 

  • Bot C, Hall BS, Bashir N, Taylor MC, Helsby NA, Wilkinson SR (2010) Trypanocidal activity of aziridinyl nitrobenzamide prodrugs. Antimicrob Agents Chemother 54:4246–4252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brener Z (1962) Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 4:389–396

    CAS  PubMed  Google Scholar 

  • Buckner FS, Verlinde CL, La Flamme AC, Van Voorhis WC (1996) Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing β-galactosidase. Antimicrob Agents Chemother 40:2592–2597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cançado JR (1999) Criteria of Chagas disease cure. Mem Inst Oswaldo Cruz 94(Suppl 1):331–335

    Article  PubMed  Google Scholar 

  • Castro JA, de Mecca MM, Bartel LC (2006) Toxic side effects of drugs used to treat Chagas' disease (American trypanosomiasis). Hum Exp Toxicol 25:471–479

    Article  CAS  PubMed  Google Scholar 

  • Chen YT, Brinen LS, Kerr ID, Hansell E, Doyle PS, McKerrow JH, Roush WR (2010) In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Negl Trop Dis 4:e825

    Article  PubMed Central  PubMed  Google Scholar 

  • Coura JR (2009) Present situation and new strategies for Chagas disease chemotherapy: a proposal. Mem Inst Oswaldo Cruz 104:549–554

    CAS  PubMed  Google Scholar 

  • Dos Santos Gomes FO, de Melo CM, Peixoto CA, de Lima Mdo C, Galdino SL, Pereira VR, da Rocha Pitta I (2012) New imidazolidine derivatives as anti-Trypanosoma cruzi agents: structure-activity relationships. Parasitol Res 111:2361–2366

    Article  PubMed  Google Scholar 

  • Engel JC, Doyle PS, Hsieh I, McKerrow JH (1998) Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 188:725–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gascón J, Bern C, Pinazo MJ (2010) Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop 115:22–27

    Article  PubMed  Google Scholar 

  • Le-Senne A, Muelas-Serrano S, Fernández-Portillo C, Escario JA, Gómez-Barrio A (2002) Biological characterization of a β-galactosidase expressing clone of Trypanosoma cruzi CL strain. Mem Inst Oswaldo Cruz 97:1101–1105

    Article  PubMed  Google Scholar 

  • Martínez-Díaz RA, Escario JA, Nogal-Ruiz JJ, Gómez-Barrio A (2000) Evaluation of drug activity against intracellular forms of Trypanosoma cruzi employing enzyme immunoassay. J Clin Pharm Ther 25:43–47

    Article  PubMed  Google Scholar 

  • Martínez-Díaz RA, Escario JA, Nogal-Ruiz JJ, Gómez-Barrio A (2001) Biological characterization of Trypanosoma cruzi strains. Mem Inst Oswaldo Cruz 96:53–59

    Article  PubMed  Google Scholar 

  • McCabe RE, Remington JS, Araujo FG (1984) Mechanisms of invasion and replication of the intracellular stage in Trypanosoma cruzi. Infect Immun 46:372–376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muelas S, Di Maio R, Cerecetto H, Seoane G, Ochoa C, Escario JA, Gómez-Barrio A (2001) New thiadiazine derivatives with activity against Trypanosoma cruzi amastigotes. Folia Parasitol (Praha) 48:105–108

    Article  CAS  Google Scholar 

  • Muelas S, Suárez M, Pérez R, Rodríguez H, Ochoa C, Escario JA, Gómez-Barrio A (2002) In vitro and in vivo assays of 3,5-disubstituted-tetrahydro-2H-1,3,5-thiadiazin-2-thione derivatives against Trypanosoma cruzi. Mem Inst Oswaldo Cruz 97:269–272

    Article  CAS  PubMed  Google Scholar 

  • Muelas-Serrano S, Le-Senne A, Fernández-Portillo C, Nogal JJ, Ochoa C, Gómez-Barrio A (2002) In vitro and in vivo anti-Trypanosoma cruzi activity of a novel nitro-derivative. Mem Inst Oswaldo Cruz 97:553–557

    Article  CAS  PubMed  Google Scholar 

  • Murta SM, Gazzinelli RT, Brener Z, Romanha AJ (1998) Molecular characterization of susceptible and naturally resistant strains of Trypanosoma cruzi to benznidazole and nifurtimox. Mol Biochem Parasitol 93:203–214

    Article  CAS  PubMed  Google Scholar 

  • Neal RA, van Bueren J (1988) Comparative studies of drug susceptibility of five strains of Trypanosoma cruzi in vivo and in vitro. Trans R Soc Trop Med Hyg 82:709–714

    Article  CAS  PubMed  Google Scholar 

  • Raethel W, Hänel H (2003) Nitroheterocyclic drugs with broad spectrum activity. Parasitol Res 99(Suppl 1):S19–S39

    Google Scholar 

  • Ribeiro TS, Freire-de-Lima L, Previato JO, Mendoça-Previato L, Heise N, Freire-de-Lima E (2004) Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorg Med Chem Lett 14:3555–3558

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez J, Arán VJ, Boiani L, Olea-Azar C, Lavaggi ML, González M, Cerecetto H, Maya JD, Carrasco-Pozo C, Speisky Cosoy H (2009) New potent 5-nitroindazole derivatives as inhibitors of Trypanosoma cruzi growth: synthesis, biological evaluation, and mechanism of action studies. Bioorg Med Chem 17:8186–8196

    Article  PubMed  Google Scholar 

  • Rolón M, Seco EM, Vega C, Nogal JJ, Escario JA, Gómez-Barrio A, Malpartida F (2006) Selective activity of polyene macrolides produced by genetically modified Streptomyces on Trypanosoma cruzi. Int J Antimicrob Agents 28:104–109

    Article  PubMed  Google Scholar 

  • Romanha AJ, Castro SL, Soeiro MN, Lannes-Vieira J, Ribeiro I, Talvani A, Bourdin B, Blum B, Olivieri B, Zani C, Spadafora C, Chiari E, Chatelain E, Chaves G, Calzada JE, Bustamante JM, Freitas-Junior LH, Romero LI, Bahia MT, Lotrowska M, Soares M, Andrade SG, Armstrong T, Degrave W, Andrade ZA (2010) In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105:233–238

    Article  CAS  PubMed  Google Scholar 

  • Saraiva J, Vega C, Rolón M, da Silva R, Andrade e Silva ML, Donate PM, Bastos JK, Gómez-Barrio A, de Albuquerque S (2007) In vitro and in vivo activity of lignan lactones derivatives against Trypanosoma cruzi. Parasitol Res 100:791–795

    Article  PubMed  Google Scholar 

  • Schmunis GA (2007) Epidemiology of Chagas disease in non-endemic countries: the role of international migration. Mem Inst Oswaldo Cruz 102(Suppl 1):75–85

    Article  PubMed  Google Scholar 

  • Schofield CJ, Diotaiuti L, Dujardin JP (1999) The process of domestication in Triatominae. Mem Inst Oswaldo Cruz 94(Suppl 1):375–378

    Article  PubMed  Google Scholar 

  • Silva LH, Nussensweig V (1953) Sobre uma cepa de Trypanosoma cruzi altamente virulenta para o camundongo branco. Folia Clin Biol 20:191–207

    Google Scholar 

  • Sosa-Estani S, Segura EL, Ruiz AM, Velázquez E, Porcel BM, Yampotis C (1998) Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas' disease. Am J Trop Med Hyg 59:526–529

    CAS  PubMed  Google Scholar 

  • Szajnman SH, Bailey BN, Docampo R, Rodríguez JB (2001) Bisphosphonates derived from fatty acids are potent growth inhibitors of Trypanosoma cruzi. Bioorg Med Chem Lett 11:789–792

    Article  CAS  PubMed  Google Scholar 

  • Urbina JA (2010) Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115:55–68

    Article  PubMed  Google Scholar 

  • Vega C, Rolón M, Martínez-Fernández AR, Escario JA, Gómez-Barrio A (2005) A new pharmacological screening assay with Trypanosoma cruzi epimastigotes expressing β-galactosidase. Parasitol Res 95:296–298

    Article  CAS  PubMed  Google Scholar 

  • Vega MC, Rolón M, Montero-Torres A, Fonseca-Berzal C, Escario JA, Gómez-Barrio A, Gálvez J, Marrero-Ponce Y, Arán VJ (2012) Synthesis, biological evaluation and chemometric analysis of indazole derivatives. 1,2-Disubstituted 5-nitroindazolinones, new prototypes of antichagasic drug. Eur J Med Chem 58:214–227

    Article  CAS  PubMed  Google Scholar 

  • Walum E (1998) Acute oral toxicity. Environ Health Perspect 106(Suppl 2):497–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkinson SR, Kelly JM (2009) Trypanocidal drugs: mechanisms, resistance and new targets. Expert Rev Mol Med 11:e31

    Article  PubMed  Google Scholar 

  • World Health Organization (2010) Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases. Department of Reproductive Health and Research, World Health Organization, Geneva

    Google Scholar 

  • Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Spanish Ministries of Science and Innovation (MICINN ref SAF2009-10399) and Foreign Affairs and Cooperation (MAEC-AECID, ref A/030156/10) and to Universidad Complutense de Madrid Research Group “Terapia Antiparasitaria” (UCM-BSCH, ref 911120) for the financial support. Research by Cristina Fonseca-Berzal has been also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM & CSIC). The authors thank to LAFEPE, Pernambuco, Brazil, for kindly providing benznidazole raw product.

Ethical standards

The authors declare that all the experiments comply with the current laws of Spain.

Conflict of interest

The authors declare that they have no conflict of interest in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Fonseca-Berzal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca-Berzal, C., Escario, J.A., Arán, V.J. et al. Further insights into biological evaluation of new anti-Trypanosoma cruzi 5-nitroindazoles. Parasitol Res 113, 1049–1056 (2014). https://doi.org/10.1007/s00436-013-3740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3740-5

Keywords

Navigation