Skip to main content
Log in

Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The developments of resistance and persistence to chemical insecticides and concerns about the non-target effects have prompted the development of eco-friendly mosquito control agents. The aim of this study was to investigate the larvicidal activities of synthesized cobalt nanoparticles (Co NPs) using bio control agent, Bacillus thuringiensis against malaria vector, Anopheles subpictus and dengue vector, Aedes aegypti (Diptera: Culicidae). The synthesized Co NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy, and Transmission electron microscopy (TEM). XRD analysis showed three distinct diffraction peaks at 27.03°, 31.00°, and 45.58° indexed to the planes 102, 122, and 024, respectively on the face-centered cubic cobalt acetate with an average size of 85.3 nm. FTIR spectra implicated role of the peak at 3,436 cm−1 for O–H hydroxyl group, 2924 cm−1 for methylene C–H stretch in the formation of Co NPs. FESEM analysis showed the topological and morphological appearance of NPs which were found to be spherical and oval in shape. TEM analysis showed polydispersed and clustered NPs with an average size of 84.81 nm. The maximum larvicidal mortality was observed in the cobalt acetate solution, B. thuringiensis formulation, and synthesized Co NPs against fourth instar larvae of A. subpictus and A. aegypti with LC50 values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L; r 2 values of 0.986, 0.933, 0.942; 0.962, 0.957, and 0.922, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barreto ML, Teixeira MG (2008) Dengue no Brasil: situação epidemiológica e contribuições para uma agenda de pesquisa. Rev Estud Avançados 22(64):53–72

    Article  Google Scholar 

  • Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl CD, Kaiser A (2010) Mosquitoes and their control. Springer, Heidelberg, p 577

    Book  Google Scholar 

  • Bellows TS (2001) Restoring population balance through natural enemy introductions. Biol Cont 21:199–205

    Article  Google Scholar 

  • Chandra G, Bhattacharjee I, Chatterjee S (2010) A review on Anopheles subpictus Grassi a biological vector. Acta Trop 15(2):142–154

    Article  Google Scholar 

  • Chatterjee SN, Chandra G (2000) Role of Anopheles subpictus as a primary vector of malaria in an area in India. Jpn J Trop Med Hyg 28(3):177–181

    Article  Google Scholar 

  • Chatterjee S, Subhra Ghosh T, Das S (2010) Virulence of Bacillus cereus as natural facultative pathogen of Anopheles subpictus Grassi (Diptera: Culicidae) larvae in submerged rice-fields and shallow ponds. African J Biotechnol 9(41):6983–6987

    Google Scholar 

  • Coates J (2000) In: Meyers RA (ed) Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10837

    Google Scholar 

  • Daniel T, Umarani S, Sakthivadivel M (1995) Insecticidal action of Ervatamia divaricata L. and Acalypha indica L. against Culex quinquefasciatus Say. Geobios 14:95–98

    Google Scholar 

  • Deepika TL, Kannabiran K, Khanna VG, Rajakumar G, Jayaseelan C, Santhoshkumar T, Rahuman AA (2012) Isolation and characterisation of acaricidal and larvicidal novel compound (2S,5R,6R)-2-hydroxy-3,5,6-trimethyloctan-4-one from Streptomyces sp. against blood-sucking parasites. Parasitol Res 111(3):1151–1163

    Article  PubMed  Google Scholar 

  • Dhanasekaran D, Sakthi V, Thajuddin N, Panneerselvam A (2010) Preliminary evaluation of Anopheles mosquito larvicidal efficacy of mangrove actinobacteria. IJABPT 1(2):374–381

    Google Scholar 

  • Dhanda V, Kaul HN (1980) Mosquito vectors of Japanese encephalitis virus and their bionomics in India. Proc Indian Natl Sci Acad B46(1):759–768

    Google Scholar 

  • Guzman MG, Halstead SB, Artsob H, Buchy P, Jeremy F, Gubler DJ (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8(12 Suppl):S7–S16

    Article  PubMed  CAS  Google Scholar 

  • Headrick DH, Goeden RD (2001) Biological control as a tool for ecosystem management. Biol Cont 21:249–257

    Article  Google Scholar 

  • Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route of synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Biol 48:1152–1156

    PubMed  CAS  Google Scholar 

  • James AA (1992) Mosquito molecular genetics: the hands that feed bite back. Science 257:37–38

    Article  PubMed  CAS  Google Scholar 

  • Jha AK, Prasad K (2012) Biological synthesis of cobalt ferrite nanoparticles. Nanotechnol Dev 2(e9):46–51

    CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B Biointerfaces 71:226–229

    Article  PubMed  CAS  Google Scholar 

  • Joseph ARK, Viswanathan B (2011) Synthesis of cobalt nanoparticles with vegetable oil as the stabilizing agent. Bull Cat Soc Infias 9:6–12

    Google Scholar 

  • Jude PJ, Tharmasegaram T, Sivasubramaniyam G, Senthilnanthanan M, Kannathasan S, Raveendran S, Ramasamy R, Surendran SN (2012) Salinity-tolerant larvae of mosquito vectors in the tropical coast of Jaffna, Sri Lanka and the effect of salinity on the toxicity of Bacillus thuringiensis to Aedes aegypti larvae. Parasitol Vect 5(269):2–8

    Google Scholar 

  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Kaushik R, Saini P (2008) Larvicidal activity of leaf extract of Millingtonia hortensis (Family: Bignoniacear) against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. J Vec Borne Dis 45:66–69

    CAS  Google Scholar 

  • Klempner MS, Unnasch TR, Hu LT (2007) Taking a bite out of vector-transmitted infectious diseases. N Engl J Med 356(25):2567–2569

    Article  PubMed  CAS  Google Scholar 

  • Kovendan K, Murugan K, Prasanna Kumar K, Panneerselvam C, Mahesh Kumar P, Amaresan D, Subramaniam J, Vincent S (2012) Mosquitocidal properties of Calotropis gigantea (Family: Asclepiadaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against the mosquito vectors. Parasitol Res 111(2):531–544

    Article  PubMed  Google Scholar 

  • Manonmani AM, Hoti SL (1995) Field efficacy of indigenous strains of Bacillus thuringiensis H-14 and Bacillus sphaericus H-5a5b against Anopheles subpictus larvae. Trop Biomed 12(2):141–146

    Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549

    Article  PubMed  Google Scholar 

  • Mukhtar M, Herrel N, Amerasinghe FP, Ensink J, van der Hoek W, Konradsen F (2003) Role of wastewater irrigation in mosquito breeding in south Punjab, Pakistan. Southeast Asian J Trop Med Public Health 34:72–80

    PubMed  Google Scholar 

  • Murugesan AG, Prabu SC, Selvakumar C (2009) Biolarvicidal activity of extracellular metabolites of the keratinophilic fungus Trichophyton mentagrophytes against larvae of Aedes aegypti—a major vector for chikungunya and dengue. Folia Microbiol 54(3):213–216

    Article  CAS  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2012) Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Parasitol Res 110(5):1841–1847

    Article  PubMed  Google Scholar 

  • Pauline S, Amaliya AP (2012) Size and shape control evaluation of cobalt (Co) and cobalt ferrite (CoFe2O4) magnetic nanoparticles. Arch Phys Res 3(2):78–83

    CAS  Google Scholar 

  • Poopathi S, Anupkumar K, Arunachalam N, Sekar V, Tyagi BK (2003) A small scale mosquito control field trial with the biopesticides Bacillus sphaericus and Bacillus thuringiensis serovar israelensis produced from a new culture medium. Biocontrol Sci Tech 13:743–748

    Article  Google Scholar 

  • Prabakaran G, Hoti SL (2008) Immobilization of alginate-encapsulated Bacillus thuringiensis var. israelensis containing different multivalent counterions for mosquito control. Curr Microbiol 57(2):111–114

    Article  PubMed  CAS  Google Scholar 

  • Prabhu K, Murugan K, Nareshkumar A, Bragadeeswaran S (2011) Larvicidal and pupicidal activity of spinosad against the malarial vector Anopheles stephensi. Asian Pac J Trop Med 610–613

  • Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P (2010) Bacterial mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol 1:71–79

    Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71(5):553–555

    Article  PubMed  CAS  Google Scholar 

  • Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118:196–203

    Article  PubMed  CAS  Google Scholar 

  • Ramaiah KD, Das PK, Michael E, Guyatt H (2000) The economic burden of lymphatic filariasis in India. Parasitol Today 16(6):251–253

    Article  PubMed  CAS  Google Scholar 

  • Rana S, Philip J, Raj B (2010) Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry. Mat Chem Phys 124:264–269

    Article  CAS  Google Scholar 

  • Rao TR (1984) The Anophelines of India. Malaria Research Centre (ICMR), Delhi, p 518

  • Rashmi K, Krishnaveni T, Ramanamurthy S, Maruthi Mohan P (2004) Characterization of Cobalt nanoparticle from a Cobalt resistant strain of Neurospora crassa International Symposium of Research Students on Materials Science and Engineering December 20–22

  • Reddy PJ, Krishna D, Murthy US, Jamil K (1992) A microcomputer FORTRAN program for rapid determination of lethal concentration of biocides in mosquito control. Comput Appl Biosci 8:209–213

    PubMed  CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  • Sanpo N, Wang J, Berndt CC (2013) Influence of chelating agents on the microstructure and antibacterial property of cobalt ferrite nanopowders. J Aust Ceram Soc 49(1):84–91

    CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Article  PubMed  Google Scholar 

  • Saurav K, Rajakumar G, Kannabiran K, Rahuman AA, Velayutham K, Elango G, Kamaraj C, Zahir AA (2013) Larvicidal activity of isolated compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one from marine Streptomyces VITSVK5 sp. against Rhipicephalus (Boophilus) microplus, Anopheles stephensi, and Culex tritaeniorhynchus. Parasitol Res 112(1):215–226

    Article  PubMed  Google Scholar 

  • Singh CP, Singh KN, Pandey MC (1996) Insect growth regulatory effect of neem derivative “Neemolin” on Spilosoma obligue Walker. Pestology 5:11–13

    Google Scholar 

  • Soni N, Prakash S (2012) Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitol 2012(2):1–7

    Google Scholar 

  • Subramaniam J, Murugan K, Kovendan K (2012) Larvicidal and pupcidal efficacy of Momordica charantia leaf extract and bacterial insecticide, Bacillus thuringiensis against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). J Biopest 5:163–169

    Google Scholar 

  • Suman TY, Elumalai D, Kaleena PK, Radhika Rajasree SR (2013) GC–MS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors. Ind Crop Prod 47:239–245

    Article  CAS  Google Scholar 

  • Thanh NTK, Puntes VF, Tung LD, Fernig DG (2005) Peptides as capping ligands for in situ synthesis of water soluble Co nanoparticles for bioapplications. J Phys Conf Ser 17:70–76

    Article  CAS  Google Scholar 

  • Thenmozhi M, Gopal JV, Kannabiran K, Rajakumar G, Velayutham K, Rahuman AA (2013) Eco-friendly approach using marine actinobacteria and its compounds to control ticks and mosquitoes. Parasitol Res 112(2):719–729

    Article  PubMed  Google Scholar 

  • Vijayan V, Balaraman K (1991) Metabolites of fungi & actinomycetes active against mosquito larvae. Indian J Med Res 93:115–117

    PubMed  CAS  Google Scholar 

  • Wang XS, Wang H, Coombs N, Winnik MA, Manners I (2005) Redox-induced synthesis and encapsulation of metal nanoparticles in shell-cross-linked organometallic nanotubes. J Am Chem Soc 127(25):8924–8925

    Article  PubMed  CAS  Google Scholar 

  • WHO (2005) Sixth meeting of the technical advisory group on the global elimination of lymphatic filariasis, Geneva, Switzerland. Wkly Epidemiol Rec 80:401–408

    Google Scholar 

  • World Health Organization WHO (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides. CTD/WHO PES/IC/ 96.1. Geneva: p. 69

  • World Health Organization WHO (2009) Dengue guidelines for diagnosis, treatment, prevention and control. Available at:http://whqlibdoc.who.int/publications/2009/9789241547871_eng. pdf. Accessed February 10, 2010

  • Zhou G (2011) Microwave assisted synthesis of cobalt phosphate nanoparticles and their antiproliferation against human lung cancer cells and primary osteoblasts in vitro. Int J Chem 3(4):127–133

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to C. Abdul Hakeem College Management, Dr. S.Y. Anver Sheriff, Principal, Dr. Hameed Abdul Razack, HOD of Zoology Department, for providing the facilities to carry out this work. Mr. S. Marimuthu gratefully thanks University Grants Commission (UGC-RGNF-JRF-F1-17.1/2011-12/RGNF-SC-TAM-6614 /(SA-III/Website)) Government of India, New Delhi for financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Abdul Rahuman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marimuthu, S., Rahuman, A.A., Kirthi, A.V. et al. Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors. Parasitol Res 112, 4105–4112 (2013). https://doi.org/10.1007/s00436-013-3601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3601-2

Keywords

Navigation