Skip to main content
Log in

In vitro and in vivo screening of anthelmintic activity of ginger and curcumin on Ascaridia galli

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Intestinal helmintic infection, continue to be a cause of major concern in several parts of the world, particularly in the developing nations. The use of plant extracts to control poultry helminths is increasing in different rearing systems. The anthelmintic activity of ginger and curcumin was studied on the nematode Ascaridia galli. In vitro and in vivo studies were allocated. Live parasites for in vitro studies were collected from the intestine of naturally infected chickens. Some living worms were incubated at 37 °C in media containing ginger at three concentration levels (25, 50, and 100 mg/ml), and others were incubated in media containing curcumin at the same concentration levels. Another living worm group was incubated in media containing albendazole at a dose of 7.5 mg/ml. The extracts' efficacy was exhibited in a concentration–time-dependent manner mainly at 100 mg/ml and after 48 h. The in vivo study takes place on experimentally infected chickens. Group of infected chickens was treated with ginger extract at dose of 100 mg, another group was treated with curcumin extract at dose of 100 mg, and a third group was treated with albendazole at dose of 7.5 mg. In vivo study of ginger and curcumin recorded lower mortality rates than the in vitro study. It is concluded that ginger and curcumin extracts have potential anthelmintic properties against A. galli. Ginger in all concentrations used exhibited a higher death rate observed than curcumin. Their wormicidal effect is concentration–time dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Ghaffar F, Semmler M, Al-Rasheid KA, Strassen B, Fischer K, Aksu G, Klimpel S, Mehlhorn H (2011) The effects of different plant extracts on intestinal cestodes and on trematodes. Parasitol Res 108(4):979–984. doi:10.1007/s00436-010-2167-5

    Article  PubMed  Google Scholar 

  • Abdelqader A, Gauly M, Wollny CB, Abo-Shehdada MN (2008) Prevalence and burden of gastrointestinal helminthes among local chickens in northern Jordan. Prev Vet Med 85:17–22

    Article  PubMed  CAS  Google Scholar 

  • Abdelqader A, Qarallah B, Al-Ramamneh D, Daş G (2012) Anthelmintic effects of citrus peels ethanolic extracts against Ascaridia galli. Vet Parasitol 188(1–2):78–84. doi:10.1016/j.vetpar.2012.03.003

    Article  PubMed  CAS  Google Scholar 

  • Adedapo A, Otesile AT, Soetan KO (2007) Assessment of the anthelmintic efficacy of an aqueous crude extract of Vernonia amygdalina. Pharm Biol 45:564–568

    Article  Google Scholar 

  • Ademola IO, Eloff JN (2011) Anthelminthic activity of acetone extract and fractions of Vernonia amygdalina against Haemonchus contortus eggs and larvae. Trop Anim Health Prod 43:521–527

    Article  PubMed  Google Scholar 

  • Ahmad M, Nizami WA (1987) In vitro effects of mebendazole on the carbohydrate metabolism of Avitellina lahorea (Cestoda). J Helminthol 61:247–252

    Article  PubMed  CAS  Google Scholar 

  • Allam G (2009) Immunomodulatory effects of curcumin treatment on murine Schistosomiasis mansoni. Immunobiology 214(8):712–727

    Article  PubMed  CAS  Google Scholar 

  • Atjanasuppat K, Wongkham W, Meepowpan P, Kittakoop P, Sobhon P, Bartlett A, Whitfield PJ (2009) In vitro screening for anthelmintic and antitumour activity of ethnomedicinal plants from Thailand. J Ethnopharmacol 123:475–482

    Article  PubMed  Google Scholar 

  • Banu MJ, Nellaiappan K, Dhandayuthapani S (1989) Lactate dehydrogenase from adult Setaria digitata (Nematoda: Onchocercidae). Vet Parasitol 32:311–323

    Article  PubMed  CAS  Google Scholar 

  • Bashtar AR, Hassanein M, Abdel-Ghaffar F, Al-Rasheid K, Hassan S, Mehlhorn H, Al-Mahdi M, Morsy K, Al-Ghamdi A (2011) Studies on monieziasis of sheep I. Prevalence and antihelminthic effects of some plant extracts, a light and electron microscopic study. Parasitol Res 108(1):177–186. doi:10.1007/s00436-010-2060-2

    Article  PubMed  Google Scholar 

  • Das G, Kaufmann F, Abel H, Gauly M (2010) Effect of extra dietary lysine in Ascaridia galli infected grower layers. Vet Parasitol 170:238–243

    Article  PubMed  CAS  Google Scholar 

  • Datta A, Sukul NC (1987) Antifilarial effect of Zingiber officinale on Dirofilaria immitis. J Helminthol 61:268–270

    Article  PubMed  CAS  Google Scholar 

  • Desrivot J, Waikedre J, Cabalion P, Herrenknecht C, Bories C, Hocquemiller R, Fournet A (2007) Antiparasitic activity of some New Caledonian medicinal plants. J Ethnopharmacol 112(1):7–12

    Article  PubMed  Google Scholar 

  • Elango G, Rahuman AA (2011) Evaluation of medicinal plant extracts against ticks and fluke. Parasitol Res 108(3):513–519. doi:10.1007/s00436-010-2090-9

    Article  PubMed  Google Scholar 

  • Ferraz ABF, Balbino JM, Zini CA, Ribeiro VL, Bordignon SA, von Poser G (2010) Acaricidal activity and chemical composition of the essential oil from three Piper species. Parasitol Res 107(1):243–248. doi:10.1007/s00436-010-1878-y

    Article  Google Scholar 

  • Goto C, Kasuya S, Koga K, Ohtomo H, Kagei N (1990) Lethal efficacy of extract from Zingiber officinale (traditional Chinese medicine) or [6]-shogaol and [6]-gingerol in Anisakis larvae in vitro. Parasitol Res 76:653–656

    Article  PubMed  CAS  Google Scholar 

  • Hossain E, Chandra G, Nandy AP, Mandal SC, Gupta JK (2012) Anthelmintic effect of a methanol extract of leaves of Dregea volubilis on Paramphistomum explanatum. Parasitol Res 110(2):809–814. doi:10.1007/s00436-011-2558-2

    Article  PubMed  Google Scholar 

  • Hussain H, Shukla OP, Ghatak S, Kaushal NA (1990) Enzymes of PEP-succinate pathway in Setaria cervi and effect of anthelmintic drugs. Indian J Exp Biol 28:871–875

    PubMed  CAS  Google Scholar 

  • Iqbal Z, Lateef M, Ashraf M, Jabbar A (2004) Anthelmintic activity of Artemisia brevifolia in sheep. J Ethnopharmacol 93:265–268

    Article  PubMed  Google Scholar 

  • Iqbal Z, Lateef M, Akhtar MS, Ghayur MN, Gilani AH (2006) In vivo anthelmintic activity of ginger against gastrointestinal nematodes of sheep. J Ethnopharmacol 106:285–287

    Article  PubMed  Google Scholar 

  • Kaufmann F, Das G, Sohnrey B, Gauly M (2011) Helminth infections in laying hens kept in organic free range systems in Germany. Livest Sci 141:182–187

    Article  Google Scholar 

  • Khalafalla RE, Müller U, Shahiduzzaman M, Dyachenko V, Desouky AY, Alber G, Daugschies A (2011) Effects of curcumin (diferuloylmethane) on Eimeria tenella sporozoites in vitro. Parasitol Res 108(4):879–886. doi:10.1007/s00436-010-2129-y

    Article  PubMed  Google Scholar 

  • Klimpel S, Abdel-Ghaffar F, Al-Rasheid KA, Aksu G, Fischer K, Strassen B, Mehlhorn H (2011) The effects of different plant extracts on nematodes. Parasitol Res 108(4):1047–1054. doi:10.1007/s00436-010-2168-4

    Article  PubMed  Google Scholar 

  • Lachumy SJT, Sasidharan S, Sumathy V, Zuraini Z (2010) Pharmacological activity, phytochemical analysis and toxicity of methanol extract of Etlingera elatior (torch ginger) flowers. Asian Pac J Trop Med 3:769–774

    Article  Google Scholar 

  • Lakhdar-Ghazal F, Blonski C, Willson M, Michels P, Perie J (2002) Glycolysis and proteases as targets for the design of new anti-trypanosome drugs. Curr Top Med Chem 2:439–456

    Article  PubMed  CAS  Google Scholar 

  • Lin RJ, Chenc CY, Chunga LY, Yen CM (2010) Larvicidal activities of ginger (Zingiber officinale) against Angiostrongylus cantonensis. Acta Trop 115:69–76

    Article  PubMed  Google Scholar 

  • Liu YT, Wang F, Wang GX, Han J, Wang Y, Wang YH (2010) In vivo anthelmintic activity of crude extracts of Radix angelicae pubescentis, Fructus bruceae, Caulis spatholobi, Semen aesculi, and Semen pharbitidis against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitol Res 106(5):1233–1239. doi:10.1007/s00436-010-1799-9

    Article  PubMed  Google Scholar 

  • Magalhães LG, Machado CB, Morais ER, Moreira EB, Soares CS, da Silva SH, Da Silva Filho AA, Rodrigues V (2009) In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol Res 104(5):1197–1201. doi:10.1007/s00436-008-1311-y

    Article  PubMed  Google Scholar 

  • Magalhães LG, Kapadia GJ, da Silva Tonuci LR, Caixeta SC, Parreira NA, Rodrigues V, Da Silva Filho AA (2010) In vitro schistosomicidal effects of some phloroglucinol derivatives from Dryopteris species against Schistosoma mansoni adult worms. Parasitol Res 106(2):395–401. doi:10.1007/s00436-009-1674-8

    Article  PubMed  Google Scholar 

  • Mahady GB, Pendland SL, Yun GS, Lu ZZ, Stoia A (2003) Ginger (Zingiber officinale Roscoe) and the gingerols inhibit the growth of Cag A+ strains of Helicobacter pylori. Anticancer Res 23:3699–3702

    PubMed  CAS  Google Scholar 

  • Mahady GB, Pendland SL, Stoia A, Hamill FA, Fabricant D, Dietz BM, Chadwick LR (2005) In vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phytother Res 19:988–991

    Article  PubMed  Google Scholar 

  • Maphosa V, Masika PJ (2012) The potential of Elephantorrhiza elephantina as an anthelminthic in goats. Parasitol Res 111(2):881–888. doi:10.1007/s00436-012-2914-x

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn H, Al-Quraishy S, Al-Rasheid KA, Jatzlau A, Abdel-Ghaffar F (2011) Addition of a combination of onion (Allium cepa) and coconut (Cocos nucifera) to food of sheep stops gastrointestinal helminthic infections. Parasitol Res 108(4):1041–1046. doi:10.1007/s00436-010-2169-3

    Article  PubMed  Google Scholar 

  • Mostafa OM, Eid RA, Adly MA (2011) Antischistosomal activity of ginger (Zingiber officinale) against Schistosoma mansoni harbored in C57 mice. Parasitol Res 109(2):395–403. doi:10.1007/s00436-011-2267-x

    Article  PubMed  Google Scholar 

  • Nandakumar DN, Nagaraj VA, Vathsala PG, Rangarajan P, Padmanaban G (2006) Curcumin-artemisinin combination therapy for malaria. Antimicrob Agents Chemother 50(5):1859–1860

    Article  PubMed  CAS  Google Scholar 

  • Nery PS, Nogueira FA, Oliveira NJ, Martins ER, Duarte ER (2012) Efficacy of extracts of immature mango on ovine gastrointestinal nematodes. Parasitol Res 111(6):2467–2471. doi:10.1007/s00436-012-3017-4

    Article  PubMed  Google Scholar 

  • Nogueira FA, Fonseca LD, da Silva RB, de Paiva Ferreira AV, Nery PS, Geraseev LC, Duarte ER (2012) In vitro and in vivo efficacy of aqueous extract of Caryocar brasiliense Camb. to control gastrointestinal nematodes in sheep. Parasitol Res 111(1):325–330. doi:10.1007/s00436-012-2843-8

    Article  PubMed  Google Scholar 

  • Nostro A, Cellini L, Di Bartolomeo S, Cannatelli MA, Di Campli E, Procopio F, Grande R, Marzio L, Alonzo V (2006) Effects of combining extracts (from propolis or Zingiber officinale) with clarithromycin on Helicobacter pylori. Phytother Res 20:187–190

    Article  PubMed  CAS  Google Scholar 

  • Omar MS, Raoof AM, Al-Amari OM (1996) Onchocerca fasciata: enzyme histochemistry and tissue distribution of various dehydrogenases in the adult female worm. Parasitol Res 82:32–37

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Arriaga L, Mendoza-Magaña ML, Cortés-Zárate R, Corona-Rivera A, Bobadilla-Morales L, Troyo-Sanromán R, Ramírez-Herrera MA (2006) Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop 98(2):152–161

    Article  PubMed  Google Scholar 

  • Rana AK, Misra-Bhattacharya S (2013) Current drug targets for helminthic diseases. Parasitol Res 112(5):1819–1831. doi:10.1007/s00436-013-3383-6

    Article  PubMed  Google Scholar 

  • Rasmussen HB, Christensen SB, Kvist LP, Karazmi A (2000) A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med 66:396–398

    Article  PubMed  CAS  Google Scholar 

  • Sanderson L, Bartlett A, Whitefield PJ (2002) In vitro and in vivo studies on the bioactivity of a ginger (Zingiber officinale) extract towards adult schistosomes and their egg production. J Helminthol 76:241–247

    Article  PubMed  CAS  Google Scholar 

  • Schmahl G, Al-Rasheid KA, Abdel-Ghaffar F, Klimpel S, Mehlhorn H (2010) The efficacy of neem seed extracts (Tre-san®, MiteStop®) on a broad spectrum of pests and parasites. Parasitol Res 107(2):261–269. doi:10.1007/s00436-010-1915-x

    Article  PubMed  Google Scholar 

  • Semmler M, Abdel-Ghaffar F, Al-Rasheid K, Mehlhorn H (2009) Nature helps: from research to products against blood-sucking arthropods. Parasitol Res 105(6):1483–1487. doi:10.1007/s00436-009-1634-3

    Article  PubMed  Google Scholar 

  • Shahiduzzaman M, Dyachenko V, Khalafalla RE, Desouky AY, Daugschies A (2009) Effects of curcumin on Cryptosporidium parvum in vitro. Parasitol Res 105(4):1155–1161. doi:10.1007/s00436-009-1535-5

    Article  PubMed  CAS  Google Scholar 

  • Sharma RK, Singh K, Saxena R, Saxena KK (1986) Effect of some anthelmintics on malate dehydrogenase activity and mortality in two avian nematodes Ascaridia galli and Heterakis gallinae. Angew Parasitol 27:175–180

    PubMed  CAS  Google Scholar 

  • Shyu LY, Chang HH, Hsu JD, Lin DP, Teng YH, Lee HH (2011) Curcumin alleviates eosinophilic meningitis through reduction of eosinophil count following albendazole treatment against Angiostrongylus cantonensis in mice. Parasitology 7:1–8

    Google Scholar 

  • SPSS (2007) SPSS for Windows, version 16.0. Release 16.0.0. Chicago, IL

  • Squires JM, Foster J, Lindsay D, Caudell D, Zajac A (2010) Efficacy of an orange oil emulsion as an anthelmintic against Haemonchus contortus in gerbils (Meriones unguiculatus) and in sheep. Vet Parasitol 172:95–99

    Article  PubMed  Google Scholar 

  • Srinivasan NG, Wariso BA, Kulkarni G, Rao GS, Harris BG (1988) Phosphofructokinase from Dirofilaria immitis. Stimulation of activity by phosphorylation with cyclic AMP-dependent protein kinase. J Biol Chem 263:3482–3485

    PubMed  CAS  Google Scholar 

  • Tangpu V, Temjenmongla, Yadav AK (2006) Anticestodal property of Strobilanthes discolor: an experimental study in Hymenolepis diminuta—rat model. J Ethnopharmacol 105:459–463

    Article  PubMed  Google Scholar 

  • Wu ZF, Zhu B, Wang Y, Lu C, Wang GX (2011) In vivo evaluation of anthelmintic potential of medicinal plant extracts against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitol Res 108(6):1557–1563. doi:10.1007/s00436-010-2211-5

    Article  PubMed  Google Scholar 

  • Yazwinski TA, Chapman HD, Davis RB, Letonja T, Pote L, Maes L, Vercruysse J, Jacobs DE (2003) World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines for evaluating the effectiveness of anthelmintics in chickens and turkeys. Vet Parasitol 116:159–173

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman K. A. Bazh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazh, E.K.A., El-Bahy, N.M. In vitro and in vivo screening of anthelmintic activity of ginger and curcumin on Ascaridia galli . Parasitol Res 112, 3679–3686 (2013). https://doi.org/10.1007/s00436-013-3541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3541-x

Keywords

Navigation