Skip to main content

Advertisement

Log in

Oviposition and flight orientation response of Aedes aegypti to certain aromatic aryl hydrazono esters

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Aedes aegypti is a day-biting, highly anthropophilic mosquito and a potential vector of dengue and chikungunya in India. A. aegypti is a container breeder, generally oviposit in the stored and fresh water bodies, and discarded containers near residential areas that provide suitable habitats for oviposition by gravid females. The diurnal activity and endophilic nature of these mosquitoes have increased the frequency of contact with human being. Assured blood meal from human host in an infested area leads to increased disease occurrence. Gravid mosquitoes can potentially be lured to attractant-treated traps and could subsequently be killed with insecticides or growth regulators. In this direction, oviposition by A. aegypti females to aryl hydrazono esters (AHE)-treated bowls at 10 ppm concentration was tested in dual choice experiment, and their orientation response to these ester compounds was studied in Y-tube olfactometer. Among the esters tested, AHE-2, AHE-11 and AHE-12 elicited increased egg deposition with oviposition activity indices (OAI) of +0.39, +0.24 and +0.48, respectively, compared to control; in contrast, AHE-8, AHE-9 and AHE-10 showed negative oviposition response with OAI of −0.46, −0.35 and −0.29, respectively, at 10 mg/L. In the Y-tube olfactometer bioassay, AHE-2 attracted 60 % females compared to control, while to the odour of AHE-11 and AHE-12, about 70 % of the females were trapped in treated chambers. In contrast, only 27–30 % of gravid females entered the chamber releasing AHE-8, AHE-9 and AHE-10 odour plumes, while 70 % entered control chamber, evincing a possible non-preference of treatment odours as well as interference with olfactory receptors. These compounds have the potential for application as oviposition stimulants or deterrents for surveillance and control of mosquito population using ovitraps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bandyopadhyay P, Guha L, Seenivasagan T, Sathe M, Sharma P, Parashar BD, Kaushik MP (2011) Sythesis and bio-evaluation of aryl hydrazono esters for oviposition responses in Aedes albopictus. Bioorg Med Chem Lett 21:794–797

    Article  PubMed  CAS  Google Scholar 

  • Barbosa RM, Furtado A, Regis L, Leal WS (2010) Evaluation of an oviposition-stimulating kairomone for the yellow fever mosquito, Aedes aegypti, in Recife, Brazil. J Vector Ecol 35:204–207

    Article  PubMed  Google Scholar 

  • Beehler JW, Millar JG, Mulla MS (1994) Field evaluation of synthetic compounds mediating oviposition response in Culex mosquitoes (Diptera: Culicidae). J Chem Ecol 20:281–291

    Article  CAS  Google Scholar 

  • Bentley MD, Day JF (1989) Chemical ecology and behavioural aspects of mosquito oviposition. Ann Rev Entomol 34:401–421

    Article  CAS  Google Scholar 

  • Darriet F, Corbel V (2008) Aedes aegypti oviposition in response to NPK fertilizers. Parasite 15:89–92

    PubMed  CAS  Google Scholar 

  • Darriet F, Zumbo B, Corbel V, Chandre F (2010) Influence of plant matter and NPK fertilizer on the biology of Aedes aegypti (Diptera: Culicidae). Parasite 17(2):149–154

    PubMed  CAS  Google Scholar 

  • Garud A, Ganesan K, Prakash S, Vijayaraghavan R, Shinde CK (2011) Behavioral responses and bioefficacy of some aromatic amides against Aedes aegypti. J Econ Entomol 104:1369–1378

    Article  PubMed  CAS  Google Scholar 

  • Harrington LC, Edman JD, Scott TW (2001) Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood. J Med Entomol 38:411–422

    Article  PubMed  CAS  Google Scholar 

  • Healy TP, Jepson PC (1988) The location of floral nectars resources by mosquitoes: the long range responses of Anopheles arabiensis Patton (Diptera: Culicidae) to Achillea millefolium flowers and isolated floral odour. Bull Ent Res 78:651–657

    Article  Google Scholar 

  • Huang J, Walker ED, Giroux PY, Vulule J, Miller JR (2005) Ovipositional site selection by Anopheles gambiae: influences of substrate moisture and texture. Med Vet Entomol 19:442–450

    Article  PubMed  CAS  Google Scholar 

  • Jang EB, Casana-Giner V, Oliver JE (2007) Field captures of wild melon fly (Diptera: Tephritidae) with an improved male attractant, raspberry ketone formate. J Econ Entomol 100:1124–1128

    Article  PubMed  CAS  Google Scholar 

  • Jhumar US, Dotterl S, Jurgens A (2008) Floral odors of Silene otites: their variability and attractiveness to mosquitoes. J Chem Ecol 34:14–25

    Article  Google Scholar 

  • Khandagle AJ, Tare VS, Raut KD, Morey RA (2011) Bioactivity of essential oils of Zingiber officinalis and Achyranthes aspera against mosquitoes. Parasitol Res 109:339–343

    Article  PubMed  Google Scholar 

  • Knols BGJ, Sumba LA, Guda TO, Deng AI, Hassanali A, Beier JC (2004) Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Top Insect Sci 24:260–265

    Google Scholar 

  • Kramer LW, Mulla SM (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8:1111–1117

    Google Scholar 

  • Kremar S (2007) Responses of Tabanidae (Diptera) to canopy traps baited with 4-methylphenol, 3-isopropylphenol, and naphthalene. J Vector Ecol 32:188–192

    Article  Google Scholar 

  • Kumar S et al (2011) Impact of Parthenium hysterophorus leaf extracts on the fecundity, fertility and behavioural response of Aedes aegypti L. Parasitol Res 108:853–859

    Article  PubMed  Google Scholar 

  • Lenhart AE, Walle M, Cedillo H, Kroeger A (2005) Building a better ovitrap for detecting Aedes aegypti oviposition. Acta Trop 96(1):56–59

    Article  PubMed  Google Scholar 

  • Maheswaran R, Ignacimuthu S (2011) A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res. doi:10.1007/s00436-011-2702-z

  • McIver SB, Siemicki R (1978) Fine structure of tarsal sensilla of Aedes aegypti (L.) (Diptera: Culicidae). J Morphol 155:137–154

    Article  Google Scholar 

  • Metcalf RL, Metcalf ER, Mitchell WC (1975) Benzyl acetates as attractants for the male oriental fruit fly, Dacus dorsalis, and the male melon fly, Dacus cucurbitae. Proc Nat Acad Sci 83:1549–1553

    Article  Google Scholar 

  • Millar JG, Chaney JD, Mulla MS (1992) Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J Am Mosq Control Assoc 8:11–17

    PubMed  CAS  Google Scholar 

  • Perry AS, Fay RW (1967) Correlation of chemical constitution and physical properties of fatty acid esters with oviposition response of Aedes aegypti. Mosq News 27:175–183

    Google Scholar 

  • Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Natl Acad Sci U S A 105(27):9262–9267

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar S, Jebanesan A (2008) Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family: Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 104(1):19–25

    Article  PubMed  CAS  Google Scholar 

  • Renou M, Guerrero A (2000) Insect parapheromones in olfaction research and semiochemical-based pest control strategies. Ann Rev Entomol 45:605–630

    Article  CAS  Google Scholar 

  • Ritchie SA, Long SA, McCaffrey N, Key C, Lonergan G, Williams CR (2008) A biodegradable lethal ovitrap for control of container-breeding Aedes. J Am Mosq Control Assoc 24(1):47–53

    Article  PubMed  Google Scholar 

  • Rossignol PA, McIver SB (1977) Fine structure and role in behavior of sensilla on the terminalia of Aedes aegypti (L.) (Diptera: Culicidae). J Morphol 151:419–437

    Article  PubMed  CAS  Google Scholar 

  • Seenivasagan T, Vijayaraghavan R (2010) Oviposition pheromones in haematophagous insects. Vitam Hormon 83:597–630

    Article  CAS  Google Scholar 

  • Seenivasagan T, Sharma KR, Sekhar K, Ganesan K, Prakash S, Vijayaraghavan R (2009) Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitol Res 104:827–833

    Article  PubMed  CAS  Google Scholar 

  • Seenivasagan T, Sharma KR, Ganesan K, Prakash S (2010) Electrophysiological, flight orientation and oviposition responses of three species of mosquito vectors to hexadecyl pentanoate: residual oviposition repellent activity. J Med Entomol 47:329–337

    Article  PubMed  CAS  Google Scholar 

  • Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agrawal OP, Malhotra RC, Prakash S (2008) Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters. Parasitol Res 103:1065–1073

    Article  PubMed  Google Scholar 

  • Takken W (1999) Chemical signals affecting mosquito behaviour. Invertebr Reprod Dev 36:67–71

    Article  CAS  Google Scholar 

  • Takken W, Knols BGJ (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Ann Rev Entomol 44:131–157

    Article  CAS  Google Scholar 

  • Thavara U et al (2001) Larval occurrence, oviposition behavior and biting activity of potential mosquito vectors of dengue on Samui Island, Thailand. J Vector Ecol 26:172–178

    PubMed  CAS  Google Scholar 

  • Toki T, Koyanagi T, Yoshida K, Sasaki H, Morita M, Yoneda T (1992) Hydrazone compounds, processes for their production, intermediates useful for their production and pesticidal compositions containing them. Patent US5288727

  • Trexlar JD, Apperson CS, Gemeno C, Perich MJ, Carlson D, Schal C (2003) Field and laboratory evaluation of potential oviposition attractants for Aedes albopictus (Diptera: Culicidae). J Am Mosq Control Assoc 19:228–234

    Google Scholar 

  • Warikoo R, Wahab N, Kumar S (2011) Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector, Aedes aegypti L. Parasitol Res 109:1125–1131

    Article  PubMed  Google Scholar 

  • Wirtz RA, Turrentine JD Jr, Fox RC (1981) Area repellents for mosquitoes (Diptera: Culicidae): identification of the active ingredients in a petroleum oil fraction. J Med Entomol 18:126–128

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. R. Vijayaraghavan, Ex-Director, DRDE, Gwalior for his keen interest and encouragement during the course of work under Project 201 (S&T) of our establishment. We thank all the members of the Entomology Division for the help in maintenance of the mosquito culture. P. B. is thankful to Defence Research & Development Organization, New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Seenivasagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guha, L., Seenivasagan, T., Bandyopadhyay, P. et al. Oviposition and flight orientation response of Aedes aegypti to certain aromatic aryl hydrazono esters. Parasitol Res 111, 975–982 (2012). https://doi.org/10.1007/s00436-012-2921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2921-y

Keywords

Navigation