Skip to main content

Advertisement

Log in

Copper nanoparticles synthesized by polyol process used to control hematophagous parasites

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present study was based on assessments of the anti-parasitic activities of the hematophagous (blood feeding) larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector, Culex quinquefasciatus, Say (Diptera: Culicidae), and the larvae of cattle tick Rhipicephalus (Boophilus) microplus, Canestrini (Acari: Ixodidae). The metallic copper nanoparticles (Cu NPs) synthesized by polyol process from copper acetate as precursor and Tween 80 were used as both the medium and the stabilizing reagent. The efficacy of synthesized Cu NPs was tested against the larvae of blood-sucking parasites. UV-vis spectra characterization was performed, and peak was observed at 575 nm, which is the characteristic to the surface plasmon bond of Cu NPs. The strong surface plasmon absorption band observed at 575 nm may be due to the formation of non-oxidized Cu NPs. X-ray diffraction (XRD) spectral data showed concentric rings corresponding to the 26.79 (111), 34.52 (200), and 70.40 (220) reflections. XRD spectrum of the copper nanoparticles exhibited 2θ values corresponding to the copper nanocrystal. No peaks of impurities are observed in XRD data. The scanning electron micrograph (SEM) showed structures of irregular polygonal, cylindrical shape, and the size range was found to be 35–80 nm. The size of the Cu NPs was measured by atomic force microscope (AFM) in non-contact mode. For imaging by AFM, the sample was suspended in acetone and spins coated on a silicon wafer. The line profile image was drawn by the XEI software and the horizontal line at 6 μm on a 2D AFM image. Research has demonstrated that metallic nanoparticles produce toxicity in aquatic organisms that is due largely to effects of particulates as opposed to release of dissolved ions. Copper acetate solution tested against the parasite larvae exposed to varying concentrations and the larval mortality was observed for 24 h. The larval percent mortality observed in synthesized Cu NPs were 36, 49, 75, 93,100; 32, 53, 63, 73, and 100 and 36, 47, 69, 88, 100 at 0.5, 1.0, 2.0, 4.0, and 8.0 mg/L against A. subpictus, C. quinquefasciatus and R. microplus, respectively. The larval percent mortality shown in copper acetate solution were 16, 45, 57, 66 and 100, 37, 58, 83, 87, and 100 and 41, 59, 79, 100, and 100 at 10, 20, 30, 40, and 50 mg/L against A. subpictus, C. quinquefasciatus, and R. microplus, respectively. The maximum efficacy was observed in Cu NPs and copper acetate solution against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus with LC50 and r 2 values of 0.95 and 23.47, 1.01 and 15.24, and 1.06 and 14.14 mg/L with r 2 = 0.766; 0.957 and 0.908; 0.946; and 0.816 and 0.945, respectively. The control (distilled water) showed nil mortality in the concurrent assay. The chi-square value was significant at p ≤ 0.05 level. This is the first report on anti-parasitic activity of the synthesized Cu NPs and copper acetate solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida EA, Bainy ACD, Loureiro APM, Martinez GR, Miyamoto S, Onuki J, Barbosa LF, Garcia CCM, Prado FM, Ronsein GE, Sigolo CA, Brochini CB, Martins AMG, Medeiros MHG, DiMascio P (2007) Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: antioxidants, lipid peroxidation and DNA damage. Comp Biochem Physiol A 146:588–600

    Article  Google Scholar 

  • Amerasinghe PH, Amerasinghe FP (1999) Multiple host feeding in field populations of Anopheles culicifacies and Anopheles subpictus in Sri Lanka. Med Vet Entomol 13(2):124–131

    Article  PubMed  CAS  Google Scholar 

  • Ang TP, Wee TSA, Chin WSJ (2004) Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters. Phys Chem B 108:11001–11010

    Article  CAS  Google Scholar 

  • Anjali CH, Sudheer Khan S, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  PubMed  CAS  Google Scholar 

  • Anyaogu KC, Fedorov AV, Neckers DC (2008) Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir 24(8):4340–4346

    Article  PubMed  CAS  Google Scholar 

  • Arnold WR, Santore RC, Cotsifas JS (2005) Predicting copper toxicity in estuarine and marine waters using the biotic ligand model. Mar Pollut Bull 50:1634–1640

    Article  PubMed  CAS  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Bai W, Tian W, Zhang Z, He X, Ma Y, Liu N, Chai Z (2010) Effects of copper nanoparticles on the development of zebrafish embryos. J Nanosci Nanotechnol 10(12):8670–8676

    Article  PubMed  CAS  Google Scholar 

  • Bjorn PZ, Hermann HD, Max L, Heide S, Barabara KG, Hartmut D (2003) Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply. Sci Total Environ 302:127–144

    Article  Google Scholar 

  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47

    Article  PubMed  CAS  Google Scholar 

  • Breman JG, Martin AS, Mills A (2004) Conquering the intolerable burden of malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg 71(Suppl 2):1–15

    PubMed  Google Scholar 

  • Brooks SJ, Mills CL (2003) The effect of copper on osmoregulation in the freshwater amphipod Gammarus pulex. Comp Biochem Physiol A Mol Integr Physiol 135(4):527–537

    Article  PubMed  Google Scholar 

  • Burke JM, Soli F, Miller JE, Terrill TH, Wildeus S, Shaik SA, Getz WR, Vanguru M (2010) Administration of copper oxide wire particles in a capsule or feed for gastrointestinal nematode control in goats. Vet Parasitol 168(3–4):346–350

    Article  PubMed  CAS  Google Scholar 

  • Bury NR, Wood CM (1999) Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na(þ) channel. Am J Physiol 277:1385–1391

    Google Scholar 

  • Bury NR, Grosell M, Grover AK, Wood CM (1999) ATP dependent silver transport across the basolateral membrane of rainbow trout gills. Toxicol Appl Pharmacol 159:1–8

    Article  PubMed  CAS  Google Scholar 

  • Byrne PA, Halloran JO (2001) The role of bivalve molluscs as tools in estuarine sediment toxicity testing: a review. Hydriobiologia 465:209–217

    Article  CAS  Google Scholar 

  • Cavalcanti ESBC, de Morais SM, Lima MAA, Santana EWPS (2004) Larvicidal activity of essential oils from Brazilian against Aedes aegypti L. Mem Inst Oswaldo Cruz 99(5):541–544

    Article  PubMed  CAS  Google Scholar 

  • Cetin H, Yanikoglu A, Cilek JE (2010) Larvicidal activity of selected plant hydrodistillate extracts against the house mosquito, Culex pipiens, a West Nile virus vector. Parasitol Res. doi:10.1007/s00436-010-2136-z

    PubMed  Google Scholar 

  • Chandra G, Bhattacharjee I, Chatterjee S (2010) A review on Anopheles subpictus Grassi—a biological vector. Acta Trop 15(2):142–154

    Article  Google Scholar 

  • Chen C, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  PubMed  CAS  Google Scholar 

  • Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin PG (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381:607–616

    Article  PubMed  CAS  Google Scholar 

  • Dhanda V, Kaul HN (1980) Mosquito vectors of Japanese encephalitis virus and their bionomics in India. Proc Indian Natl Sci Acad 46B:759

    Google Scholar 

  • Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452

    Article  CAS  Google Scholar 

  • Dhingra N, Jha P, Sharma VP, Cohen AA, Jotkar RM, Rodriguez PS, Bassani DG, Suraweera W, Laxminarayan R, Peto R (2010) Adult and child malaria mortality in India: a nationally representative mortality survey. Lancet 376(9754):1768–1774

    Article  PubMed  Google Scholar 

  • Ducornez S, BarréN MRJ, deGarine-Wichatisky M (2005) Diagnosis of amitraz resistance in Boophilus microplus in New Caledonia with modified larval packet test. Vet Parasitol 130:285–292

    Article  PubMed  CAS  Google Scholar 

  • Eisler R (2007) Eisler’s encyclopedia of environmentally hazardous priority chemicals. Elsevier Science, Oxford

    Google Scholar 

  • Erlacher A, Ambrico M, Capozzi V, Augelli V, Jaeger H, Ullrich B (2004) X-ray, absorption and photocurrent properties of thin-film GaAs on glass formed by pulsed-laser deposition. Semicond Sci Technol 19:1322–1324

    Article  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20(50):505701

    Article  PubMed  CAS  Google Scholar 

  • Fan W, Cui M, Liu H, Wang C, Shi Z, Tan C, Yang X (2011) Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environ Pollut 159:729–734

    Article  PubMed  CAS  Google Scholar 

  • FAO (2004) Ticks: acaricide resistance: diagnosis management and prevention in: guidelines resistance management and integrated parasite control in ruminants. FAO Animal Production and Health Division, Rome

    Google Scholar 

  • Fernandes FF (2001) Toxicological effects and resistance to pyretroids in Boophilus microplus from Goiás Brasil. Arq Bras Med Vet Zootec 53:548–552

    Article  Google Scholar 

  • Fernandes FF, Freitas EPS (2007) Acaricidal activity of an oleoresinous extract from Copaifera reticulata (Leguminosae: Caesalpinioideae) against larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol 147:150–154

    Article  Google Scholar 

  • Fernandes FF, Freitas EPS, Costa AC, Silva IG (2005) Larvicidal potential of Sapindus saponaria to control the cattle tick Boophilus microplus. Pesqui Agropecu Bras 40:1243–1245

    Article  Google Scholar 

  • Furlong J (1993) Controle do carrapato dos bovinos na Região Sudeste do Brasil. Bolm Téc.8 Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte

  • Galhardi CM, Diniz YS, Faine LA, Rodrigues HG, Burneiko RC, Ribas BO, Novelli EL (2004) Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction. Food Chem Toxicol 42:2053–2060

    Article  PubMed  CAS  Google Scholar 

  • Gericke A, Govere JM, Durrheim DN (2002) Insecticide susceptibility in the South African malaria mosquito Anopheles arabiensis (Diptera: Culicidae). S Afr J Sci 98:205–208

    CAS  Google Scholar 

  • Ghosh S, Azhahianambi P, de la Fluente J (2006) Control of ticks of ruminants with special emphasis on livestock farming system in India-present and future possibilities for integrated control: a review. Exp Appl Acarol 40:49–66

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Sharma AK, Kumar S, Tiwari SS, Rastogi S, Srivastava S, Singh M, Kumar R, Paul S, Ray DD, Rawat AK (2011) In vitro and in vivo efficacy of Acorus calamus extract against Rhipicephalus (Boophilus) microplus. Parasitol Res 108:361–370. doi:10.1007/s00436-010-2070-0

    Article  PubMed  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41(23):8178–8186

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M (2000) Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol 14:181–189

    Article  PubMed  CAS  Google Scholar 

  • Hay SI, Gething PW, Snow RW (2010) India’s invisible malaria burden. Lancet 376(9754):1716–1717

    Article  PubMed  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    Article  PubMed  CAS  Google Scholar 

  • Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45(1):179–190

    Article  PubMed  CAS  Google Scholar 

  • Hoedojo PF, Atmosoedjono S, Purnomo TT (1980) A study on vectors of Bancroftian filariasis in West Flores, Indonesia. Southeast Asian J Trop Med Public Health 11(3):399–404

    PubMed  CAS  Google Scholar 

  • Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Re Sci Instrum 78:013705

    Google Scholar 

  • Huang HH, Yan FQ, Kek YM, Chew CH, Xu GQ, Ji W, Oh PS, Tang SH (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res. doi:10.1007/s00436-010-2242-y

  • Jesse B, Mary RL (2004) Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. J Nutr Biochem 15:316–322

    Article  Google Scholar 

  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104(5):1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Karlsson HK, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier H-C, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122

    Article  PubMed  CAS  Google Scholar 

  • Khanna PK, Gaikwad S, Adhyapak PV, Singh N, Marimuthu R (2007) Synthesis and characterization of copper nanoparticles. Mat Let 61:4711–4714

    Article  CAS  Google Scholar 

  • Kim YH, Kang YS, Lee WJ, Jo BG, Jeong JH (2006) Synthesis of Cu nanoparticles prepared by using thermal decomposition of Cu-oleate complex. Mol Cryst Liq Cryst 445:231–238

    CAS  Google Scholar 

  • Kiran SR, Bhavani K, Devi PS, Rao BRR, Reddy KJ (2006) Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol 97:2481–2484

    Article  CAS  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wetchemical route against blood feeding parasites. Parasitol Res. doi:10.1007/s00436-011-2277-8

    Google Scholar 

  • Kumar RV, Mastai Y, Diamant Y, Gedanken A (2001) Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. J Mater Chem 11:1209–1213

    Article  CAS  Google Scholar 

  • Kuppusamy C, Murugan K (2009) Mosquitocidal effect of Andographis paniculatenees against the malaria vector, Anopheles stephensi Liston (Diptera: culicidae). Int j integr Bio 5(2):75–81

    CAS  Google Scholar 

  • Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R (2008) Effect of surfactant and polymers on stability and antibacterial activity of silver nanoparticles(NPs). J Phys Chem 112:5825–5834

    CAS  Google Scholar 

  • Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, Wang Q, Yuan Y, Liao M (2008) Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232(2):292–301

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Bando Y (2003) A novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305

    Article  CAS  Google Scholar 

  • Luoma S, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, Cambridge

    Google Scholar 

  • Mahapatraa O, Bhagatb M, Gopalakrishnana C, Arunachalamb KD (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Experi Nanosci 3(3):185–193

    Article  Google Scholar 

  • Mann EL, Nathan A, James WM, Sallie WC (2002) Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol Oceanogr 47(4):976–988

    Article  CAS  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2010) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res. doi:10.1007/s00436-010-2212-4

    Google Scholar 

  • Martinez-Velazquez M, Castillo-Herrera GA, Rosario-Cruz R, Flores-Fernandez JM, Lopez-Ramirez J, Hernandez-Gutierrez R, Del Carmen Lugo-Cervantes E (2010) Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 108:481–487. doi:10.1007/s00436-010-2069-6

    Article  PubMed  Google Scholar 

  • Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113:757–766

    Article  CAS  Google Scholar 

  • Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, Zhang C, Zhao Y (2007) Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110

    Article  PubMed  CAS  Google Scholar 

  • Mohan R, Shanmugharaj AM, Sung Hun R (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B Appl Biomater 96(1):119–126

    PubMed  Google Scholar 

  • Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicol 269(2–3):182–189

    Article  CAS  Google Scholar 

  • Mouneyrac C, Mastain O, Amiard JC, Amiard-Triquet C, Beaunier P, Jeantet AY, Smith BD, Rainbow PS (2003) Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment. Mar Biol 143:73–744

    Article  Google Scholar 

  • Muturi EJ, Burgess P, Novak RJ (2008) Malaria vector management: where have we come from and where are we headed? Am J Trop Med Hyg 78:536–537

    PubMed  Google Scholar 

  • National Vector Borne Disease Control Programme (NVBDCP) (2008) Malaria, magnitude of the problem. Available at http://www.nvbdcp.gov.in/malaria3.html

  • Nicolau A, Mota M, Lima N (2004) Effect of different toxic compounds on ATP content and acid phosphatase activity in axenic cultures of Tetrahymena pyriformis. Ecotoxicol Environ Saf 57:129–135

    Article  PubMed  CAS  Google Scholar 

  • Panicker KN, Bai MG, Rao USB, Viswam K, Suryanarayanamurthy U (1981) An. subpictus vector of malaria in coastal villages of South-East India. Curr Sci 50:694–695

    Google Scholar 

  • Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311(2):417–424

    Article  PubMed  CAS  Google Scholar 

  • Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop. doi:10.1016/j.actatropica.2011.03.003

    PubMed  Google Scholar 

  • Ranson H, Rossiter L, Ortelli F, Jensen B, Wang X, Roth CW, Collins FH, Hemingway J (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector, Anopheles gambie. Biochem J 359:295–304

    Article  PubMed  CAS  Google Scholar 

  • Rao TR (1984) The anophelines of India. Malaria Research Unit (ICMR), Delhi, p 518

  • Rawani A, Ghosh A, Chandra G (2010) Mosquito larvicidal activities of Solanum nigrum L. leaf extract against Culex quinquefasciatus Say. Parasitol Res 107(5):1235–1240

    Article  PubMed  Google Scholar 

  • Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    Article  PubMed  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    Article  PubMed  CAS  Google Scholar 

  • Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdörster G (2010) Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73(5):445–461

    Article  PubMed  CAS  Google Scholar 

  • Sabatini GA, Kemp DH, Hughes S, Nari A, Hansen J (2001) Tests to determine LC50 and discriminating doses formacrocyclic lactones against the cattle tick, Boophilus microplus. Vet Parasitol 95:53–62

    Article  PubMed  CAS  Google Scholar 

  • Salzemann C, Lisiecki I, Urban J, Pileni MP (2004) Anisotropic copper nanocrystals synthesized in a supersaturated medium: nanocrystal growth. Langmuir 20:11772

    Article  PubMed  CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702

    Article  PubMed  Google Scholar 

  • Sharma VP (2003) Malaria and poverty in India. Curr Sci 84(4):513–515

    Google Scholar 

  • Shelton AM, Wang P, Zhao J-Z, Roush RT (2007) Resistance to insect pathogens and strategies to manage resistance: An update. In: Laceyand LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, New York

    Google Scholar 

  • Shi J, Abid AD, Kennedy IM, Hristovaa KR, Silk WK (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut. doi:10.1016/j.envpol.2011.01.028

    Google Scholar 

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434(7030):214–217

    Article  PubMed  CAS  Google Scholar 

  • Solé M, Kopecka-Pilarczyk J, Blasco J (2009) Pollution biomarkers in two estuarine invertebrates, Nereis diversicolor and Scrobicularia plana, from a Marsh ecosystem in SW Spain. Environ Int 35:523–531

    Article  PubMed  Google Scholar 

  • Stone V, Nowack B, Baun A, van den Brink N, Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754

    Article  PubMed  CAS  Google Scholar 

  • Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27

    Article  PubMed  CAS  Google Scholar 

  • Thenmozhi V, Rajendran R, Ayanar K, Manavalan R, Tyagi BK (2006) Long-term study of Japanese encephalitis virus infection in Anopheles subpictus in Cuddalore district, Tamilnadu, South India. Trop Med Int Health 11(3):288–293

    Article  PubMed  CAS  Google Scholar 

  • Thomas KV, Brooks S (2010) The environmental fate and effects of antifouling paint biocides. Biofouling 26(1):73–88

    Article  PubMed  CAS  Google Scholar 

  • Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S, Martra G (2002) Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem Mater 14:1183–1186

    Article  CAS  Google Scholar 

  • Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X (2010) Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 167(15):1298–1306

    Article  PubMed  CAS  Google Scholar 

  • WHO (2005) World malaria report. WHO/HTM/MAL/2005. WHO, Geneva, p 1102

  • WHO (2008) World malaria report 2008. WHO, Geneva

  • Yang B, Wang Q, Lei R, Wu C, Shi C, Wang Q, Yuan Y, Wang Y, Luo Y, Hu Z, Ma H, Liao M (2010) Systems toxicology used in nanotoxicology: mechanistic insights into the hepatotoxicity of nano-copper particles from toxicogenomics. J Nanosci Nanotechnol 10(12):8527–8537

    Article  PubMed  CAS  Google Scholar 

  • Yeh MS, Yang YS, Lee YP, Lee HF, Yeh YH, Yeh CS (1999) Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol. J Phys Chem B 103:6851–6857

    Article  CAS  Google Scholar 

  • Yoon KY, Hoon Byeon J, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575

    PubMed  CAS  Google Scholar 

  • Zhang W, Cao Q, Xie J, Ren X, Lu C, Zhou Y, Yao Y, Meng Q (2003) Structural, morphological, and magnetic study of nanocrystalline cobalt–nickel–copper particles. J Coll Inter Sci 257(2):237–243

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Abdul Rahuman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramyadevi, J., Jeyasubramanian, K., Marikani, A. et al. Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol Res 109, 1403–1415 (2011). https://doi.org/10.1007/s00436-011-2387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2387-3

Keywords

Navigation