Skip to main content

Advertisement

Log in

Characterization and mRNA expression analysis of PI31, an endogenous proteasome inhibitor from Schistosoma mansoni

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The proline-rich inhibitor of 31 kDa (PI31) is highly conserved through metazoan evolution, and its activity in the proteasome inhibition is well-established although the precise mechanism of inhibition is unclear. The coding DNA sequence of Schistosoma mansoni PI31 (SmPI31) was cloned, and the recombinant protein was expressed in bacterial system. The correct amino acid sequence was confirmed by mass spectrometry and circular dichroism suggests that SmPI31 contains both α-helix and non-structured regions. Inhibition assays, using the Suc-Leu-Leu-Val-Tyr-4-MCA substrate for proteasome degradation, showed that the S. mansoni proteasome may be regulated by the inhibitory activity of SmPI31. A gene expression assay using qRT-PCR at various stages during the S. mansoni life cycle has shown that SmPI31 transcripts are expressed in all studied stages, suggesting that PI31 plays an important role during the developmental processes of the parasite. In this study first evidence is presented that PI31 has a conserved structure and plays a role as proteasome inhibitor in adult worms and it is expressed through life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Suc-Leu-Leu-Val-Tyr-MCA:

Succinyl-Leucine-Leucine-Valine-Tyrosine-4-methyl-coumaryl-7-amide

UVCD:

Ultra-violet circular dichroism

IPTG:

Isopropyl-β-d-thiogalactopyranoside

References

  • Ashton PD, Harrop R, Shah B, Wilson RA (2001) The schistosome egg: development and secretions. Parasitology 122:329–338

    Article  CAS  PubMed  Google Scholar 

  • Basch PF (1981) Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J Parasitol 67:179–185

    Article  CAS  PubMed  Google Scholar 

  • Castro-Borges W, Cartwright J, Ashton PD et al (2007) The 20S proteasome of Schistosoma mansoni: a proteomic analysis. Proteomics 7:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Chitsulo L, Loverde P, Engels D (2004) Schistosomiasis. Nat Rev Microbiol 2:12–13

    Article  CAS  PubMed  Google Scholar 

  • Chu-Ping M, Slaughter CA, DeMartino GN (1992) Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim Biophys Acta 1119:303–311

    CAS  PubMed  Google Scholar 

  • Crabtree JE, Wilson RA (1980) Schistosoma mansoni: a scanning electron microscope study of the developing schistosomulum. Parasitology 81:553–564

    Article  CAS  PubMed  Google Scholar 

  • Dillon GP, Feltwell T, Skelton JP et al (2006) Microarray analysis identifies genes preferentially expressed in the lung schistosomulum of Schistosoma mansoni. Int J Parasitol 36:1–8

    Article  CAS  PubMed  Google Scholar 

  • Fantappie MR, Osman A, Ericsson C, Niles EG, LoVerde PT (2003) Cloning of Schistosoma mansoni Seven in Absentia (SmSINA)(+) homologue cDNA, a gene involved in ubiquitination of SmRXR1 and SmRXR2. Mol Biochem Parasitol 131:45–54

    Article  CAS  PubMed  Google Scholar 

  • Guerra-Sa R, Castro-Borges W, Evangelista EA, Kettelhut IC, Rodrigues V (2005) Schistosoma mansoni: functional proteasomes are required for development in the vertebrate host. Exp Parasitol 109:228–236

    Article  CAS  PubMed  Google Scholar 

  • Harrop R, Wilson RA (1993) Protein synthesis and release by cultured schistosomula of Schistosoma mansoni. Parasitology 107(Pt 3):265–274

    Article  CAS  PubMed  Google Scholar 

  • Hill CP, Masters EI, Whitby FG (2002) The 11S regulators of 20S proteasome activity. Curr Top Microbiol Immunol 268:73–89

    CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lawson JR, Wilson RA (1980) Metabolic changes associated with the migration of the schistosomulum of Schistosoma mansoni in the mammal host. Parasitology 81:325–336

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • McCutchen-Maloney SL, Matsuda K, Shimbara N et al (2000) cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J Biol Chem 275:18557–18565

    Article  CAS  PubMed  Google Scholar 

  • Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Santos DN, Aguiar PH, Lobo FP et al (2007) Schistosoma mansoni: heterologous complementation of a yeast null mutant by SmRbx, a protein similar to a RING box protein involved in ubiquitination. Exp Parasitol 116:440–449

    Article  CAS  PubMed  Google Scholar 

  • Smithers SR, Terry RJ (1965) The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 55:695–700

    CAS  PubMed  Google Scholar 

  • Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833

    CAS  PubMed  Google Scholar 

  • Tukey JW (1953) The problem of multiple comparisons. Dittoed manuscript of 386 pages, New Jersey: Department of Statistics, Princeton University

  • Ustrell V, Hoffman L, Pratt G, Rechsteiner M (2002) PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 21:3516–3525

    Article  CAS  PubMed  Google Scholar 

  • Wolf DH, Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695:19–31

    Article  CAS  PubMed  Google Scholar 

  • Zaiss DM, Standera S, Holzhutter H, Kloetzel P, Sijts AJ (1999) The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett 457:333–338

    Article  CAS  PubMed  Google Scholar 

  • Zaiss DM, Standera S, Kloetzel PM, Sijts AJ (2002) PI31 is a modulator of proteasome formation and antigen processing. Proc Natl Acad Sci USA 99:14344–14349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian research agencies: FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo) and CAPES (Coordenacao de Amparo ao Pessoal de Nivel Superior). We are also grateful to Elenice A. Macedo and Olinda Mara Brigato for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Botelho-Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botelho-Machado, C., Cabral, F.J., Soares, C.S. et al. Characterization and mRNA expression analysis of PI31, an endogenous proteasome inhibitor from Schistosoma mansoni . Parasitol Res 107, 1163–1171 (2010). https://doi.org/10.1007/s00436-010-1984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1984-x

Keywords

Navigation