Skip to main content

Advertisement

Log in

The efficacy of inhibitors involved in spermidine metabolism in Plasmodium falciparum, Anopheles stephensi and Trypanosoma evansi

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In the present study, we have tested the effect of different polyamine inhibitors of the spermidine metabolizing enzymes deoxyhypusine synthase and homospermidine synthase in different chloroquine resistant Plasmodium falciparum strains, in the mosquito Anopheles stephensi (Diptera: Culicidae) and in a Trypanosoma evansi clone I from strain STIB 806 K China. Recent experiments have shown that agmatine is a growth inhibitor of the malaria parasite P. falciparum (Kaiser et al. 2001) in vitro. A comparison of agmatine efficacy with the new antimalarials artemisinin, triclosan and conventional chloroquine showed similar or even better results on the basis of growth inhibition and the reduction of developmental forms. However, no effect of triclosan or agmatine was observed at the ribonucleic acid level. In a second set of experiments, we tested the effect of 1,7-diaminoheptane and agmatine on oocyst formation in A. stephensi after infection with Plasmodium yoelii. Agmatine had an antisporozoite effect since 1,000 μM led to a 59.5% inhibition of oocysts. A much weaker inhibitor of oocyst formation was 1,7-diaminoheptane. The most effective in in vitro inhibition of T. evansi was dicyclohexylamine, an inhibitor of spermidine biosynthesis with an IC50 value of 47.44 μM and the deoxyhypusine inhibitor 1,7-diaminoheptane with an IC50 value of 47.80 μM. However, both drugs were ineffective in in vivo experiments in a Trypanosoma mouse model. Two different spermidine analogues, 1,8-diaminooctane and 1,3-diaminopropane with IC50 values of 171 μM and 181.37 μM, respectively, were moderate inhibitors in vitro and ineffective in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 A
Fig  4
Fig. 5

Similar content being viewed by others

References

  • Adam H, Czihak G (1964) Arbeitsmethoden: ein Laboratoriumshandbuch für Biologen, Mediziner und technische Hilfskräfte. Fischer, Stuttgart

  • Assaraf YG, Golenser J, Spira DT, Bachrach U (1984) Polyamine levels and the activity of their biosynthetic enzymes in human erythrocytes infected with the malaria parasite, Plasmodium falciparum. Biochem J 222:815–819

    CAS  PubMed  Google Scholar 

  • Assaraf YG, Abu-Elheiga L, Spira DT, Desser H, Bachrach U (1987) Effect of polyamine depletion on macromolecular synthesis of the malarial parasite, P. falciparum, cultured in human erythrocytes. Biochem J 242:221–226

    CAS  PubMed  Google Scholar 

  • Baltz T, Baltz D, Giroud C, Crockett J (1985) Cultivation in a semi-defied medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO 4:1273–1277

    CAS  Google Scholar 

  • Beeson JG, Winstanley PA, McFadden GI, Brown GV (2001) New agents to combat malaria. Nat Med 7:149–150

    Article  CAS  PubMed  Google Scholar 

  • Bitonti AJ, Kelley SE, McCann PP (1984) Characterization of spermidine synthase from Trypanosoma brucei brucei. Mol Biochem Parasitol 13:21–28

    Article  CAS  PubMed  Google Scholar 

  • Böttcher (1994) Nachweis, Reinigung und Charakterisierung der sym- Homospermidinsynthase, Eingansenzym der Pyrrolizidinalkaloid-Biosynthese in Wurzelkulturen verschiedener Asteraceae. Dissertation, Technische Universität, Braunschweig

  • Brun R, Hecker H, Lun Z-R (1998) Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship. Vet Parasitol 79:95–107

    Article  CAS  PubMed  Google Scholar 

  • Butcher GA, Mendoza J, Sinden RE (2000) Inhibition of the mosquito transmission of Plasmodium berghei by Malarone. Ann Trop Med Parasitol 94:429–436

    CAS  PubMed  Google Scholar 

  • Chimanuka B, Francois G, Timperman G. Vander Heyden Y, Holenz J, Plaizier-Vercammen J, Holenz J, Plaizier-Vercammen J, Bringmann G (2001) A comparison of the stage- specific efficacy of chloroquine, artemether and dioncophylline B against the rodent malaria parasite Plasmodium chabaudi chabaudi in vivo. Parasitol Res 87:795–803

    Article  CAS  PubMed  Google Scholar 

  • Clark AG (2002) Malaria variorum. Nature 418:283–285

    Article  CAS  PubMed  Google Scholar 

  • Coombs GH, Goldberg DE, Klemba M, Berry C, Kay J, Mottram,JC (2001) Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol 17:532–537

    Article  CAS  PubMed  Google Scholar 

  • Dallmann K, Junker H, Balabanov S, Zimmermann U, Giebel J, Walter R (2004) Human agmatinase is diminished in the clear cell type of renal cell carcinoma. Int J Cancer 108:342–347

    Article  CAS  PubMed  Google Scholar 

  • Djkeng A, Agufa C, Donelson JE, Majiwa PA (1998) Generation of expressed sequence tags as physical landmarks in the genome of Trypanosoma brucei. Gene 221:93–106

    Article  PubMed  Google Scholar 

  • Ellis DS, Li ZL, Gu HM, Peters W, Robinson BL, Tovey G, Warhurst DC (1985) The chemotherapy of rodent malaria, XXXIX. Ultrastructural changes following treatment with artemisinin of P. berghei infection in mice with observations of the localization of [3H]-dihydroartemisinin in P. falciparum in vitro. Ann Trop Med Parasitol 79:367–374

    CAS  PubMed  Google Scholar 

  • Etchegorry MG, Helenport JP, Pecoul B, Jannin J, Legros D (2001) Availability and affordability of treatment for human African trypanosomiasis. Trop Med Int Health 6:957–959

    Article  CAS  PubMed  Google Scholar 

  • Ferreras A, Triana L, Sanchez E, Herrera F (2002) Effect on antimalarial drugs on plasmodia cell-free protein synthesis. Mem Inst Oswaldo Cruz 97:377–380

    CAS  PubMed  Google Scholar 

  • Flohe L (1998) The Achilles’ heel of trypanosomatids: trypanothione-mediated hydroperoxide metabolism. Biofactors 8:87–91

    CAS  PubMed  Google Scholar 

  • Gardner M, Hall N, Fung E, White O (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  PubMed  Google Scholar 

  • Geneste H, Hesse M (1998) Polyamine und olyamin-Derivate in der Natur. Chem Unserer Zeit 4:206–218

    Google Scholar 

  • Gillet JM, Charlier J, Bone G, Mulamba PL (1983) Plasmodium berghei: inhibition of the sporogenous cycle by α-difluoromethylornithine. Exp Parasitol 56:190–193

    Article  CAS  PubMed  Google Scholar 

  • Guansekera AM, Patankar S, Schug J et al. (2003) Drug-induced alterations in gene expression of the asexual blood forms of Plasmodium falciparum. Mol Microbiol 50:1229–1239

    Article  PubMed  Google Scholar 

  • Hart RA, Billaud JN, Choi SJ, Phillips TR (2002) Effects of 1,8-diaminooctane on the FIV Rev regulatory system. Virology 304:97–104

    Article  CAS  PubMed  Google Scholar 

  • Holt RA, Mani Subramanian G, Halpern A, et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  CAS  PubMed  Google Scholar 

  • Iyer RK, Kim HK, Tsoa RW, Grody WW, Cederbaum SD (2002) Cloning and characterization of human agmatinase. Mol Genet Metab 5:209–218

    Article  Google Scholar 

  • Janne J, Alhonen L, Leinonen P (1991) Polyamines: from molecular biology to clinical applications. Ann Med 23:241–259

    CAS  PubMed  Google Scholar 

  • Kaiser A (1999) Cloning and expression of a cDNA encoding homospermidine synthase from Senecio vulgaris (Asteraceae) in Escherichia coli. Plant J 19:195–201

    Article  CAS  PubMed  Google Scholar 

  • Kaiser A, Gottwald A, Wiersch C, Lindenthal B, Maier W, Seitz HM (2001) Effect of drugs inhibiting spermidine biosynthesis and metabolism on the in vitro development of P. falciparum. Parasitol Res 87:963–972

    CAS  PubMed  Google Scholar 

  • Lee CH, Um PY, Park MH (2001) Structure-function studies of human deoxyhypusine synthase: identification of amino acid residues critical for the binding of spermidine and NAD. Biochem J 355:841–849

    CAS  PubMed  Google Scholar 

  • Lee YB, Folk JE (1998) Branched-chain and unsaturated 1,7-diaminoheptane derivatives as deoxyhypusine synthase inhibitors. Bioorg Med Chem 6:253–270

    Article  CAS  PubMed  Google Scholar 

  • Lun ZR, Allingham R, Brun R, Lanham SM (1992) The isoenzyme characteristics of Trypanosoma evansi and Trypanosoma equiperdum isolated from diagnostic stocks in China. Ann Trop Med Parasitol 86:333–340

    CAS  PubMed  Google Scholar 

  • Moloney MB, Pawluk AR, Ackland NR (1990) Plasmodium falciparum growth in deep culture. Trans R Soc Trop Med Hyg 84:516–518

    Article  CAS  PubMed  Google Scholar 

  • Moritz E (2003) Einfluß von Spermidinsynthase-Inhibitoren auf die Entwicklung von P. y. nigeriensis Killick-Kendrick, 1973 (Apicomplexa: Plasmodidae) im Vektor An. Stephensi Liston (Diptera: Culicidae) und in vitro auf T. evansi Balbiani, 1888 (Kinetoplastida: Trypanosomatidae). Diplomarbeit, Universität Bonn, Bonn

  • Mutschler E (2001) Neue Arzneimittel. DAZ 9:93–99

    Google Scholar 

  • Ober D, Hartmann T (1999a) Homospermidine synthase, the first pathway-specific enzyme of pyyrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc Natl Acad Sci U S A 96:14777–14782

    Article  CAS  PubMed  Google Scholar 

  • Ober D, Hartmann T (1999b) Deoxyhypusine synthase from tobacco. cDNA isolation, characterization, and bacterial expression of an enzyme with extended substrate specifity. J Biol Chem 274:32040–32047

    Article  CAS  PubMed  Google Scholar 

  • Pandey AV, Joshi R, Tekwani BL, Singh RL, Chauhan VS (1997) Synthetic peptides corresponding to a repetitive sequence of malarial histidine rich protein bind haem and inhibit haemozoin formation in vivo. Mol Biochem Parasitol 90:281–288

    Article  CAS  PubMed  Google Scholar 

  • Pandey AV, Tekwani BL, Singh RL, Chauhan VR (1999) Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. JBiol Chem 274:19383–19388

    Article  CAS  Google Scholar 

  • Raasch W, Schäfer U, Chun J, Dominiak P (2001) Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br J Pharmacol 133:755–780

    CAS  PubMed  Google Scholar 

  • Ridley RG (2002) Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415:688–693

    Article  Google Scholar 

  • Ridley R, Dorn A, Vippagunta S, Vennerstrom J (1997) Haematin (haem) polymerasitation and its inhibition by quinoline antimalarials. Ann Trop Med Parasitol 91:559–566

    Article  CAS  PubMed  Google Scholar 

  • Robert A, Cazelles B, Meunier B (2001) Characterization of the alkylation product of heme by the antimalarial drug artemisinin. Angew Chem 113:2008

    Article  Google Scholar 

  • Seidensticker S (2003) Einfluß von Spermidinsynthaseinhibitoren auf die Entwicklung von P.yoelii nigeriensis Killick-Kenndrick, 1973 (Apicomplexa: Plasmodiidae) im Vektor An. Stephensi: Liston (Diptera: Culicidae) und in vitro auf T. evansi Babiani, 1888 (Kinetoplastida: Trypanosomatidae). Diplomarbeit, Universität Bonn, Bonn

  • Surolia N, Surolia A (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of P. falciparum. Nat Med 7:167–172

    Article  CAS  PubMed  Google Scholar 

  • Trager W, Williams J (1992) Extracellular (axenic) development in vitro of the erythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci U S A 89:5351-5355

    CAS  PubMed  Google Scholar 

  • Umland TC, Wolff EC, Park MH, Davies DR (2004) A new crystal structure of deoxyhypusine synthase reveals the configuration of the active enzyme and of an enzyme:NAD:inhibitor ternary comlex. J Biol Chem 279 (in press)

  • Waller RF, Ralph SA, Reed MB, Su V, Douglas JD, Minnikin DE, Cowman, AF, Besra GS, Fadden GI (2003) A type II pathway for fatty acid biosynthesis presents drug targets in Plasmodium falciparum. Antimicob Agents Chemother 47:297–301

    Article  CAS  Google Scholar 

  • Wang C, Delcros J-G, Cannon L, Konate F, Carias H, Biggerstaff J, Phanstiel O (2003) Defining the molecular requirements for the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem 46:5129–5138

    Article  CAS  PubMed  Google Scholar 

  • Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su X-Z (2002) Genetic diversity and chloroquine selective sweeps in P. falciparum. Nature 418:320–323

    Article  CAS  PubMed  Google Scholar 

  • Wright PS, Byers TL, Doreen E, Cross-Doersen DE, McCann PP, Bitonti AJ (1991) Irreversible inhibition of S-adenosylmethionine decarboxylase in P. falciparum infected erythrocytes: growth inhibition in vitro. Biochem Pharmacol 41:1713–1718

    Article  CAS  PubMed  Google Scholar 

  • Zhu MY, Iyo A, Piletz JE, Regunathan S (2004) Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochem Biophys Acta 1670:156–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Experiments were supported by grants from the Agrasan company , and by the Drs. August und . Anni Lesmüller Stiftung, Munich, Germany. The authors thank Professor R. Brun, Swiss Tropical Institute, 4002 Basel, Switzerland, for doing the in vivo experiments with polyamine inhibitors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moritz, E., Seidensticker, S., Gottwald, A. et al. The efficacy of inhibitors involved in spermidine metabolism in Plasmodium falciparum, Anopheles stephensi and Trypanosoma evansi. Parasitol Res 94, 37–48 (2004). https://doi.org/10.1007/s00436-004-1162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-004-1162-0

Keywords

Navigation