Skip to main content
Log in

NADH-ubiquinone oxidoreductase activity in the kinetoplasts of the plant trypanosomatid Phytomonas serpens

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

NADH-ubiquinone oxidoreductase activity is present in mitochondrial lysates of Phytomonas serpens. Rotenone at 2–10 μM inhibited the activity 50–75%, indicating that it belongs to respiratory complex I. The activity was also inhibited 50–60% in the presence of 10–30 nM atovaquone suggesting that inhibition of complex I represents a likely mechanism of the known antileishmanial activity of this drug. The complex was partially purified by chromatography on DEAE-Sepharose CL-6B and gel-filtration on Sepharose CL-2B. The NADH:ubiquinone oxidoreductase activity in this preparation was completely inactivated by 20 nM atovaquone. The partially purified complex was present in a low amount and its subunits could not be discerned by staining with Coomassie. However, one of its components, a homologue of the 39 kDa subunit of the bovine complex I, was identified immunochemically in the original lysate and in the partially purified material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A, B
Fig. 3A–C

Similar content being viewed by others

References

  • Almeida FVS, Branquinha MH, Giovanni-De-Simone S, Vermelho AB (2003) Extracellular metalloproteinase activity in Phytomonas françai. Parasitol Res 89:320–322

    PubMed  Google Scholar 

  • Beattie DS, Howton MM (1996) The presence of rotenone-sensitive NADH dehydrogenase in the long slender bloodstream and the procyclic forms of Trypanosoma brucei brucei. Eur J Biochem 241:888–894

    CAS  PubMed  Google Scholar 

  • Bienen EJ, Saric M, Pollakis G, Grady RW, Clarkson ABJr (1991) Mitochondrial development in Trypanosoma brucei brucei transitional bloodstream forms. Mol Biochem Parasitol 45:185–192

    Article  CAS  PubMed  Google Scholar 

  • Bienen EJ, Maturi RK, Pollakis G, Clarkson ABJr (1993) Non-cytochrome mediated mitochondrial ATP production in bloodstream form Trypanosoma brucei brucei. Eur J Biochem 216:75–80

    CAS  PubMed  Google Scholar 

  • Brown BSV, Stanislawski A, Perry QL, Williams N (2001) Cloning and characterization of the subunits comprising the catalytic core of the Trypanosoma brucei mitochondrial ATP synthase. Mol Biochem Parasitol 113:289–301

    Article  CAS  PubMed  Google Scholar 

  • Camargo EP (1999) Phytomonas and other trypanosomatid parasites of plants and fruit. Adv Parasitol 42:29–112

    Google Scholar 

  • Cauchetier E, Loiseau PM, Lehman J, Rivollet D, Fleury J, Astier A, Deniau M, Paul M (2002) Characterisation of atovaquone resistance in Leishmania infantum promastigotes. Int J Parasitol 32:1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Schanck AN, Blum JJ, Opperdoes FR (1994) Aerobic and anaerobic glucose metabolism of Phytomonas sp. isolated from Euphorbia characias. Mol Biochem Parasitol 67:321–331

    Article  CAS  PubMed  Google Scholar 

  • Christmas P, Turrens JF (2000) Separation of NADH-fumarate reductase and succinate dehydrogenase activities in Trypanosoma cruzi. FEMS Microbiol Lett 183:225–228

    Article  CAS  PubMed  Google Scholar 

  • Clarkson AB, Bienen EJ, Pollakis G, Grady RW (1989) Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J Biol Chem 264:17770–17776

    CAS  PubMed  Google Scholar 

  • Croft S, Hogg J, Gutteridge W, Hudson A, Randall A (1992) The activity of hydroxynaphtoquiones against Leishmania donovani. J Antimicrob Chemother 30:827–832

    CAS  PubMed  Google Scholar 

  • Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222–235

    PubMed  Google Scholar 

  • Degli Esposti M (2001) Assessing functional integrity of mitochondria in vitro and in vivo. Methods Cell Biol 65:75–96

    PubMed  Google Scholar 

  • Fang J, Beattie DS (2002) Novel FMN-containing rotenone-insensitive NADH dehydrogenase from Trypanosoma brucei mitochondria: Isolation and characterization. Biochemistry 41:3065–3072

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Wang YD, Beattie DS (2001) Isolation and characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, from the procyclic forms of Trypanosoma brucei. Eur J Biochem 268:3075–3082

    Article  CAS  PubMed  Google Scholar 

  • Hernandez FR, Turrens JF (1998) Rotenone at high concentrations inhibits NADH-fumarate reductase and the mitochondrial respiratory chain of Trypanosoma brucei and T. cruzi. Mol Biochem Parasitol 93:135–137

    Article  CAS  PubMed  Google Scholar 

  • Jankevicius JV, Jankevicius SI, Campaner M, Conchon I, Maeda LA, Teixeira MMG, Freymuller E, Camargo EP (1989) Life cycle and culturing of Phytomonas serpens (Gibbs), a trypanosomatid parasite of tomatoes. J Protozool 36:265–271

    Google Scholar 

  • Jernigan JA, Pearson RD, Petri WAJr, Rogers MD (1996) In vitro activity of atovaquone against Leishmania chagasi promastigotes. Antimicrob Agents Chemother 40:1064

    CAS  PubMed  Google Scholar 

  • Kaneshiro ES (2001) Are cytochrome b gene mutations the only cause of atovaquone resistance in Pneumocyctis? Drug Res Updates 4:322–329

    Article  CAS  Google Scholar 

  • Kaneshiro ES, Sul D, Hazra B (2000) Effects of atovaquone and diospyrin-based drugs on ubiquinone biosynthesis in the opportunistic pathogen Pneumocystis carinii. Antimicrob Agents Chemother 44:14–18

    Article  CAS  PubMed  Google Scholar 

  • Kerscher SJ (2000) Diversity and origin of alternative NADH:ubiquinone oxidoreductases. Biochim Biophys Acta 1459:274–283

    Article  CAS  PubMed  Google Scholar 

  • Law RHP, Manon S, Devenish RJ, Nagley P (1995) ATP synthase from Saccharomyces cerevisiae. In: Attardi GM, Chomyn A (eds) Mitochondrial biogenesis and genetics. Methods Enzymol 260:133–163

    CAS  PubMed  Google Scholar 

  • Maslov DA, Hollar L, Haghighat P, Nawathean P (1998) Demonstration of mRNA editing and localization of guide RNA genes in kinetoplast-mitochondria of the plant trypanosomatid Phytomonas serpens. Mol Biochem Parasitol 93:225–236

    Article  CAS  PubMed  Google Scholar 

  • Maslov DA, Nawathean P, Scheel J (1999) Partial kinetoplast-mitochondrial gene organization and expression in the respiratory deficient plant trypanosomatid Phytomonas serpens. Mol Biochem Parasitol 99:207–221

    Article  CAS  PubMed  Google Scholar 

  • Maslov DA, Ziková A, Kyselová I, Lukeš J (2002) A putative novel nuclear-encoded subunit of the cytochrome c oxidase complex in trypanosomatids. Mol Biochem Parasitol 125:113–125

    Article  CAS  PubMed  Google Scholar 

  • McFadden DC, Tomavo S, Berry EA, Boothroyd JC (2000) Characterization of cytochrome b from Toxoplasma gondii and Qo domain mutations as a mechanism of atovaquone-resistence. Mol Biochem Parasitol 108:1–12

    CAS  PubMed  Google Scholar 

  • Nawathean P, Maslov DA (2000) The absence of genes for cytochrome c oxidase and reductase subunits in maxicircle kinetoplast DNA of the respiration-deficient plant trypanosomatid Phytomonas serpens. Curr Genet 38:95–103

    Article  CAS  PubMed  Google Scholar 

  • Paramchuk WJ, Ismail SO, Bhatia A, Gedamu L (1997) Cloning, characterization and overexpression of two iron superoxide dismutase cDNAs from Leishmania chagasi: role in pathogenesis. Mol Biochem Parasitol 90:203–221

    Article  CAS  PubMed  Google Scholar 

  • Quesada JM, Entrala E, Fernández-Ramos C, Marín C, Sánchez-Moreno M (2001) Phytomonas spp: superoxide dismutase in plant trypanosomes. Mol Biochem Parasitol 115:123–127

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Moreno M, Lasztity D, Coppens I, Opperdoes FR (1992) Characterization of carbohydrate metabolism and demonstration of glycosomes in a Phytomonas sp. isolated from Euphorbia characias. Mol Biochem Parasitol 54:185–200

    Article  CAS  PubMed  Google Scholar 

  • Simpson L, Wang SH, Thiemann OH, Alfonzo JD, Maslov DA, Avila HA (1998) U-insertion/deletion edited sequence database. Nucleic Acids Res 26:170–176

    Article  CAS  PubMed  Google Scholar 

  • Syafruddin D, Siregar JE, Marzuki S (1999) Mutations in the cytochrome b gene of Plasmodium berghei conferring resistance to atovaquone. Mol Biochem Parasitol 104:185–194

    Article  CAS  PubMed  Google Scholar 

  • Tielens AGM, Van Hellemond JJ (1998) Differences in energy metabolism between trypanosomatidae. Parasitol Today 14:265–271

    Article  CAS  Google Scholar 

  • Tielens AGM, Van Hellemond JJ (1999) More differences in energy metabolism between Trypanosomatidae—Reply. Parasitol Today 15:346–348

    Article  Google Scholar 

  • Turrens J (1999) More differences in energy metabolism between Trypanosomatidae. Parasitol Today 15:346–348

    Article  Google Scholar 

  • Van Hellemond JJ, Opperdoes FR, Tielens AG (1998a) Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. Proc Natl Acad Sci U S A 95:3036–3041

    Article  PubMed  Google Scholar 

  • Van Hellemond JJ, Simons B, Millenaar FF, Tielens AGM (1998b) A gene encoding the plant-like alternative oxidase is present in Phytomonas but absent in Leishmania spp. J Eukaryot Microbiol 45:426–430

    PubMed  Google Scholar 

  • Vickerman K (1976) The diversity of the kinetoplastid flagellates. In: Lumsden WHR, Evans DS (eds) Biology of the Kinetoplastida. Academic Press, London, pp 1–34

Download references

Acknowledgements

We thank GlaxoWellcome for the gift of atovaquone. We also thank M. Neboháčová for discussions and A. Reyes-Prieto for help with the double reciprocal plots. The work was supported by a UC-MEXUS-CONACYT grant to D.A.M. and D.G-H. and by a grant from the UCR Genomics Institute Core Instrumentation Facility to D.A.M. All experiments presented in this work comply with the current U.S. laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri A. Maslov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Halphen, D., Maslov, D.A. NADH-ubiquinone oxidoreductase activity in the kinetoplasts of the plant trypanosomatid Phytomonas serpens . Parasitol Res 92, 341–346 (2004). https://doi.org/10.1007/s00436-003-1058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-003-1058-4

Keywords

Navigation