Skip to main content
Log in

Dirt-sifting devilfish: winnowing in the geophagine cichlid Satanoperca daemon and evolutionary implications

  • Original paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Winnowing is a foraging strategy common in geophagine cichlids (Cichlidae), in which sediment is sifted for food in the oral cavity. Geophagines have modified pharyngeal structures that function in winnowing, although detailed anatomical and functional information is still needed to clarify the mechanisms by which these fishes obtain food by sifting. With this study, we explore geophagine winnowing kinematics and variability of winnowing phases to test whether this is a highly modulated or stereotyped behavior. Winnowing was characterized with high-speed video of an archetypal winnower, Satanoperca daemon, which employs a three-part feeding behavior involving strike, winnowing, and sediment ejection. Over the course of feeding events, fish exhibited rapid reversal of hydraulic flow within the oral cavity and remarkable versatility during the winnowing stage. We also explored how cranial morphology varies within the clade across a phylogenetic hypothesis for the group. Cranial morphologies were analyzed in 19 species across 12 geophagine genera; principal component analysis suggests a particular winnowing morphospace exploited differentially by species. Central conclusions of this study are that the strike and ejection phases are stereotypic (low variation) but that rhythmic winnowing is highly variable. Winnowing in geophagines is not directly analogous to winnowing in surfperches (Embiotocidae), to which it is often compared. There is substantial morphometric variation across the clade, even between winnowing species. The wide range of anatomical and biomechanical variants in this diverse clade provides intriguing insight into an underexplored feeding strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfaro M, Westneat MW (1999) Motor patterns of herbivorous feeding: electromyographic analysis of biting in the parrotfishes Cetoscarus bicolor and Scarus iseri. Brain Behav Evol 54(4):205–222

    Article  CAS  PubMed  Google Scholar 

  • Alfaro M, Janovetz O, Westneat MW (2001) Motor control across trophic strategies: muscle activity of biting and suction feeding fishes. Am Zool 41(6):1266–1279. doi:10.1093/icb/41.6.1266

    Google Scholar 

  • Arbour JH, López-Fernández H (2013) Ecological variation in South American geophagine cichlids arose during an early burst of adaptive morphological and functional evolution. P R Soc Lond B Bio 280(1763). ISSN 0962-8452. doi:10.1098/rspb.2013.0849

  • Astudillo-Clavijo V, Arbour JH, López-Fernández H (2015) Selection towards different adaptive optima drove the early diversification of locomotor phenotypes in the radiation of Neotropical geophagine cichlids. BMC Evol Biol 15:77. ISSN 1471-2148. doi:10.1186/s12862-015-0348-7

  • Cooper WJ, Westneat MW (2009) Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches. BMC Evolut Biol 9(24). doi:10.1186/1471-2148-9-24

  • Datovo A, Vari RP (2013) The jaw adductor muscle complex in teleostean fishes: evolution, homologies and revised nomenclature (Osteichthyes: Actinopterygii). PLoS ONE 8(4). doi:10.1371/journal.pone.0060846

  • Drucker EG, Jensen JS (1991) Functional analysis of a specialized prey processing behavior: winnowing by surfperches (Teleostei: Embiotocidae). J Morphol, 210(3):267–287. ISSN 0362-2525. doi:10.1002/jmor.1052100306

  • Gidmark NJ, Staab KL, Brainerd EL, Hernandez LP (2012) Flexibility in starting posture drives flexibility in kinematic behavior of the kinethmoid-mediated premaxillary protrusion mechanism in a cyprinid fish, cyprinus carpio. J Exp Biol, 215(13):2262–2272. ISSN 0022-0949. doi:10.1242/jeb.070516

  • Gintof C, Konow N, Ross CF, Sanford CP (2010) Rhythmic chewing with oral jaws in teleost fishes: a comparison with amniotes. J Exp Biol 213(11):1868–1875

    Article  PubMed  Google Scholar 

  • Hughes GM (1960) A comparative study of gill ventilation in marine teleosts (1960). J Exp Biol, 37(1):28–45. ISSN 0022-0949

  • Hulsey CD, García De León FJ (2005) Cichlid jaw mechanics: linking morphology to feeding specialization. Funct Ecol, 19(3):487–494. ISSN 02698463. doi:10.1111/j.1365-2435.2005.00987

  • Hulsey CD, Mims MC, Streelman JT (2007) Do constructional constraints influence cichlid craniofacial diversification? P R Soc Lond B Bio, 274(1620):1867–1875. ISSN 0962-8452. doi:10.1098/rspb.2007.0444

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Kullander SO (2012) A taxonomic review of Satanoperca (Teleostei: Cichlidae) from French Guiana, South America, with description of a new species. Cybium, 36(1):247–262. ISSN 0399-0974

  • Kullander SO, Ferreira EJ (1988) A new Satanoperca species (Teleostei, Cichlidae) from the Amazon River basin in Brazil. Cybium 12(4):343–355

    Google Scholar 

  • Kullander SO, Ferreira EJ (2005) Two new species of Apistogramma Regan (Teleostei: Cichlidae) from the Rio Trombetas, Pará State, Brazil. Neotrop Ichthyol 3(3):361–371

    Article  Google Scholar 

  • López-Fernández H, Taphorn DC (2004) Geophagus abalios, G. dicrozoster and G. winemilleri (Perciformes: Cichlidae), three new species from Venezuela. Zootaxa, 27:1–27. ISSN 1175-5326

  • López-Fernández H, Honeycutt RL, Stiassny MLJ, Winemiller KO (2005) Morphology, molecules, and character congruence in the phylogeny of South American geophagine cichlids (Perciformes, Labroidei). Zool Scr, 34(6):627–651. ISSN 0300-3256. doi:10.1111/j.1463-6409.2005.00209

  • López-Fernández H, Winemiller KO, Honeycutt RL (2010) Multilocus phylogeny and rapid radiations in Neotropical cichlid fishes (Perciformes: Cichlidae: Cichlinae). Mol Phylogenet Evol, 55(3):1070–1086. ISSN 10557903. doi:10.1016/j.ympev.2010.02.020

  • López-Fernández H, Winemiller KO, Montaña C, Honeycutt RL (2012) Diet-morphology correlations in the radiation of South American geophagine cichlids (Perciformes: Cichlidae: Cichlinae). Plos Biol, 7(4). ISSN 1932-6203. doi:10.1371/journal.pone.0033997

  • López-Fernández H, Arbour J, Willis S, Watkins C, Honeycutt RL, Winemiller KO (2014) Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes. Plos Biol, 9(3). ISSN 1932-6203. doi:10.1371/journal.pone.0089832

  • MATLAB (2015) Version 860 (R2015b). MathWorks Inc., Natick, MA

    Google Scholar 

  • McCormick MI (1998) Ontogeny of diet shifts by a microcarnivorous fish, Cheilodactylus spectabilis: relationship between feeding mechanics, microhabitat selection and growth. Mar Biol 132(1):9–20

    Article  Google Scholar 

  • McMahan CD, Chakrabarty P, Sparks JS, Smith WL, Davis MP (2013) Temporal patterns of diversification across global cichlid biodiversity (Acanthomorpha: Cichlidae). Plos Biol, 8(8). ISSN 1932-6203. doi:10.1371/journal.pone.0071162

  • Montaña CG, Winemiller KO (2009) Comparative feeding ecology and habitats use of Crenicichla species (Perciformes: Cichlidae) in a Venezuelan floodplain river. Neotrop Ichthyol 7(2):267–274

    Article  Google Scholar 

  • Mueller KW, Dennis GD, Eggleston DB, Wicklund RI (1994) Size-specific social interactions and foraging styles in a shallow water population of mutton snapper, Lutjanus analis (Pisces: Lutjanidae), in the central Bahamas. Environ Biol Fish 40(2):175–188

    Article  Google Scholar 

  • Olsen AM, Westneat MW (2015) StereoMorph: an R package for the collection of 3D landmarks and curves using a stereo camera set-up. Method Ecol Evol 6:351–356. doi:10.1111/2041-210X.12326

    Article  Google Scholar 

  • R Core Team 2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rice AN, Westneat MW (2005) Coordination of feeding, locomotor and visual systems in parrotfishes (Teleostei: Labridae). J Exp Biol 208(18):3503–3518. doi:10.1242/jeb.01779

    Article  PubMed  Google Scholar 

  • Ross CF, Eckhardt A, Herrel A, Hylander WL, Metzger KA, Schaerlaeken V, Washington RL, Williams SH (2007) Modulation of intra-oral processing in mammals and lepidosaurs. Integr Comp Biol 47(1):118–136

    Article  PubMed  Google Scholar 

  • Schmitt RJ, Holbrook SJ (1984) Gape-limitation, foraging tactics and prey size selectivity of two microcarnivorous species of fish. Oecologia 63(1):6–12

    Article  Google Scholar 

  • Sokal RR, Braumann CA (1980) Significance tests for coefficients of variation and variability profiles. Systems Biol 29(1):50–66

    Article  Google Scholar 

  • Wainwright PC, Ferry-Graham LA, Waltzek TB, Carroll AM, Hulsey CD, Grubich JR (2001) Evaluating the use of ram and suction during prey capture by cichlid fishes. J Exp Biol, 204(Pt 17):3039–3051. ISSN 0022-0949

  • Wainwright PC, Mehta RS, Higham TE (2008) Stereotypy, flexibility and coordination: key concepts in behavioral functional morphology. J Exp Biol, 211(22):3523–3528. ISSN 0022-0949. doi:10.1242/jeb.007187

  • Westneat MW (1994) Transmission of force and velocity in the feeding mechanisms of labrid fishes (Teleostei, Perciformes). Zoomorphology 114(2):103–118

    Article  Google Scholar 

  • Westneat MW, Wainwright PC (1989) Feeding mechanism of Epibulus insidiator (Labridae; Teleostei): evolution of a novel functional system. J Morphol, 202(2):129–150. ISSN 1097- 4687. doi:10.1002/jmor.1052020202

Download references

Acknowledgements

We thank K. Conway and H. Prestridge (Texas A&M University Biodiversity Research and Teaching Collection), J. Armbruster and D. Werneke (Auburn University Museum of Natural History), C. Taylor and D. Wylie (Illinois Natural History Survey), and C. Lucena (Museu de Ciencias e Tecnologia PUCRS) for providing loans of geophagine specimens. We thank Susan Mochel for providing assistance with specimen dissection and gill arch preparation at the Field Museum. Andrew George provided training and assistance with use of the high-speed camera for capturing fish feeding events. Aaron Olsen provided extensive help with installation and use of the StereoMorph package in R for digitizing images.

Funding

This study was funded by Grants NSF DEB 1447421 and NSF IOS 1425049 to M. Westneat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah I. Weller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed, under University of Chicago ACUP 72365. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, H.I., McMahan, C.D. & Westneat, M.W. Dirt-sifting devilfish: winnowing in the geophagine cichlid Satanoperca daemon and evolutionary implications. Zoomorphology 136, 45–59 (2017). https://doi.org/10.1007/s00435-016-0335-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-016-0335-6

Keywords

Navigation