Zoomorphology

, Volume 135, Issue 1, pp 83–87 | Cite as

Calcitic microlens arrays in Archaster typicus: microstructural evidence for an advanced photoreception system in modern starfish

  • Ekaterina Vinogradova
  • Francisco Ruíz-Zepeda
  • Germán Plascencia-Villa
  • Miguel José-Yacamán
Original Paper

Abstract

Recent studies have shown that in some light-sensitive species of an brittlestar (Asteroidea, Echinodermata), the upper surface of the dorsal arm plate bears arrays of hemispherical microstructures which in combination with underlying neural bundles and intraskeletal chromatophores probably function as a compound eye. These calcitic lenses possess superior properties such as light weight, mechanical strength, and very low aberration and birefringence; they display a unique focusing effect, signal enhancement, intensity adjustment, angular selectivity, and photochromic activity. The discovery of these unique optical structures revealed that brittlestar visual system is more sophisticated than initially thought and has inspired active interest toward designing of biomimetic highly tunable optical elements for a wide variety of cutting-edge technological applications. Up to this moment, analogous spherical calcitic lenses have been only reported in a few species of modern brittlestars and starfish. Similar calcitic microlenses have been also observed in the Late Cretaceous fossil echinoderms. Here, we report the structural evidence for the presence of calcitic microlenses in an extant species of starfish Archaster typicus. The close resemblance in microstructure and location between the transparent regions of compact stereom described above and microlenses in the photosensitive brittlestar Ophiocoma wendtii suggests that these regions may be involved with the photoreceptor system in A. typicus.

Keywords

Echinoderms Starfish Archaster typicus Microlenses Electron microscopy 

References

  1. Aizenberg J, Handler G (2004) Designing efficient microlense arrays: lessons from nature. J Mater Chem 14:2055–2072CrossRefGoogle Scholar
  2. Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412:819–822CrossRefPubMedGoogle Scholar
  3. Aizenberg J, Muller DA, Grazul LJ, Hamann DR (2003) Direct fabrication of large micropatterned single structures. Science 299:1205–1208CrossRefPubMedGoogle Scholar
  4. Blevins E, Johnsen S (2004) Spatial vision in the Echinoid genus Echinometra. J Exp Biol 207:4249–4253CrossRefPubMedGoogle Scholar
  5. Bos AR, Gumanao GS, van Katwijk MM, Mueller B, Saceda MM, Tejada RLP (2011) Ontogenetic habitat shift, population growth, and burrowing behavior of the Indo-Pacific beach star, Archaster typicus (Echinodermata; Asteroidea). Mar Biol 158:639–648PubMedCentralCrossRefPubMedGoogle Scholar
  6. Cölfen H, Fratzl P (2012) Self-assembly of amorphous calcium carbonate microlens arrays. Nat Commun 3:75Google Scholar
  7. Delroisse J, Ullrich-Lütr E, Ortega-Martinez O, Dupont S, Arnone MI, Mallefet J, Flammang P (2014) High opsin diversity in a non-visual infaunal brittle star. BMC Genom 15:1035CrossRefGoogle Scholar
  8. Döderlein L (1898) Ueber “Krystallkörper” bei Seesternen. Denkschr Med Nat Ges Jena 8:491–494Google Scholar
  9. Dubois P, Hayt S (1990) Ultrastructure des ossicules d’échinodermes à stéréome non perforé. In: De Ridder C, Dubois P, Lahaye M-C, Jangoux M (eds) Echinoderm research. A.A. Balkema Press, Rotterdam, pp 217–223Google Scholar
  10. Garm A, Nilsson D-E (2014) Visual navigation in starfish: first evidence for the use of vision and eyes in starfish. Proc R Soc B 281:20133011PubMedCentralCrossRefPubMedGoogle Scholar
  11. Gorzelak P, Salamon MA, Lach R, Loba M, Ferré B (2014) Microlens arrays in the complex visual system of Cretaceous echinoderms. Nat Commun 5:3576. doi:10.1038/ncomms4576 CrossRefPubMedGoogle Scholar
  12. Hendler G (2004) An Echinoderm’s eye view of photoreception and vision. In: Heinzeller T, Nebelsick JH (eds) Echinoderms Munchen: proceedings of the 11th international echinoderm conference. A.A. Balkema Publishers, Leiden, pp 339–349CrossRefGoogle Scholar
  13. Hendler G, Byrne M (1987) Fine structure of the dorsal arm plate of Ophiocoma wendti: evidence for a photoreceptor system. Zoomorphology 107:261–272CrossRefGoogle Scholar
  14. Lee K, Wagermaier W, Masic A, Kommareddy KP, Bennet M, Manjubala I, Lee S-W, Park SB, Sun H, Deng S, Cui A, Lu M (2014) Fabrication of microlens arrays with varied focal lengths on curved surfaces using an electrostatic deformed template. J Micromech Microeng 24:065008CrossRefGoogle Scholar
  15. Mah CL (2005) A phylogeny of Iconaster and Glyphodiscus (Goniasteridae; Valvatida; Asteroidea) with descriptions of four new species. Zoosystema 27:131–167Google Scholar
  16. Mueller B, Bos AR, Graf G, Gumanao GS (2011) Size-specific locomotion rate and movement pattern of four common Indo-Pacific sea stars (Echinodermata; Asteroidea). Aquat Biol 12:157–164CrossRefGoogle Scholar
  17. Ruppert EE, Barnes RD (1994) Invertebrate zoology, 6th edn. Saunders College Publishing, Harcourt Brace and Co., Orlando, p 937Google Scholar
  18. Ullrich-Lüter EM, D’Aniello S, Arnone M (2013) C-opsin expressing photoreceptors in Echinoderms. Integr Comp Biol 53:27–38. doi:10.1093/icb/ict050 CrossRefPubMedGoogle Scholar
  19. Yang S, Chen G, Megens M, Ullal CK, Han Y-J, Rapaport R, Thomas EL, Aizenberg J (2005) Functional biomimetic microlens arrays with integrated pores. Adv Mater 17:435–438CrossRefGoogle Scholar
  20. Yoshida M (1966) Photosensitivity. In: Boolootian RA (ed) Physiology of Echinodermata. Wiley Interscience, New York, pp 435–464Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ekaterina Vinogradova
    • 1
  • Francisco Ruíz-Zepeda
    • 1
  • Germán Plascencia-Villa
    • 1
  • Miguel José-Yacamán
    • 1
  1. 1.Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations