Skip to main content
Log in

Integrating bulk-seq and single-cell-seq reveals disulfidptosis potential index associating with neuroblastoma prognosis and immune infiltration

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Neuroblastoma is a challenging pediatric tumor with a need for improved treatment strategies. This study explores the role of disulfidptosis, a form of cell death induced by intracellular disulfide accumulation, in neuroblastoma and its implications for prognosis and immune infiltration.

Methods

We subgrouped neuroblastoma samples based on disulfidptosis-related gene expression and constructed a disulfidptosis potential index (DPI) to quantify disulfidptosis levels in neurobalstoma. The correlation between DPI, outcome, immune infiltration, and drug sensitivity were explored.

Results

Combing RNA-seq and single-cell dataset, we found that higher disulfidptosis potential index (DPI) is associated with poorer outcomes in neuroblastoma patients, indicating the detrimental impact of enhanced disulfide stress and cellular dysfunction. Furthermore, we found that higher DPI is correlated with reduced immune infiltration within the tumor microenvironment, highlighting an immunosuppressive milieu in high DPI neuroblastomas. The DPI-high neuroblastoma may benefit from the estrogen pathway related drug fulvestrant.

Conclusion

Overall, this study highlights the significance of disulfidptosis as a potential therapeutic target and underscores the importance of integrating immune modulation strategies, offering new avenues for improved management of neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data analyzed in this study were obtained from Gene Expression Omnibus (GEO) at GSE49710, ArrayExpress at E-MTAB-8248. The codes used during the current study are available from the corresponding author upon reasonable request.

References

  • Almstedt E, Elgendy R, Hekmati N, Rosen E, Warn C, Olsen TK, Dyberg C, Doroszko M, Larsson I, Sundstrom A, Arsenian Henriksson M, Pahlman S, Bexell D, Vanlandewijck M, Kogner P, Jornsten R, Krona C, Nelander S (2020) Integrative discovery of treatments for high-risk neuroblastoma. Nat Commun 11:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson J, Majzner RG, Sondel PM (2022) Immunotherapy of neuroblastoma: facts and hopes. Clin Cancer Res 28:3196–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armideo E, Callahan C, Madonia L (2017) Immunotherapy for high-risk neuroblastoma: management of side effects and complications. J Adv Pract Oncol 8:44–55

    PubMed  PubMed Central  Google Scholar 

  • Badia IMP, Velez Santiago J, Braunger J, Geiss C, Dimitrov D, Muller-Dott S, Taus P, Dugourd A, Holland CH, Ramirez Flores RO, Saez-Rodriguez J (2022) decoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinform Adv 2:vbac016

    Article  Google Scholar 

  • Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, Selves J, Laurent-Puig P, Sautes-Fridman C, Fridman WH, de Reynies A (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:248–262

    Article  CAS  PubMed  Google Scholar 

  • Crunkhorn S (2021) Dual-targeting CAR-T cells in neuroblastoma. Nat Rev Drug Discov 20:816

    PubMed  Google Scholar 

  • Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X, Liu C (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Ham J, Costa C, Sano R, Lochmann TL, Sennott EM, Patel NU, Dastur A, Gomez-Caraballo M, Krytska K, Hata AN, Floros KV, Hughes MT, Jakubik CT, Heisey DA, Ferrell JT, Bristol ML, March RJ, Yates C, Hicks MA, Nakajima W, Gowda M, Windle BE, Dozmorov MG, Garnett MJ, McDermott U, Harada H, Taylor SM, Morgan IM, Benes CH, Engelman JA, Mosse YP, Faber AC (2016) Exploitation of the apoptosis-primed state of MYCN-amplified neuroblastoma to develop a potent and specific targeted therapy combination. Cancer Cell 29:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24:1550–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitanaka C, Kato K, Ijiri R, Sakurada K, Tomiyama A, Noguchi K, Nagashima Y, Nakagawara A, Momoi T, Toyoda Y, Kigasawa H, Nishi T, Shirouzu M, Yokoyama S, Tanaka Y, Kuchino Y (2002) Increased Ras expression and caspase-independent neuroblastoma cell death: possible mechanism of spontaneous neuroblastoma regression. J Natl Cancer Inst 94:358–368

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Nakagawara A (2013) Apoptotic cell death in neuroblastoma. Cells 2:432–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Li X, Xia Y, Wang J (2022) Pyroptosis-related gene signature predicts the prognosis and immune infiltration in neuroblastoma. Front Genet 13:809587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, Olszewski K, Horbath A, Chen X, Lei G, Mao C, Wu S, Zhuang L, Poyurovsky MV, James You M, Hart T, Billadeau DD, Chen J, Gan B (2023) Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol 25:404–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machesky LM (2023) Deadly actin collapse by disulfidptosis. Nat Cell Biol 25:375–376

    Article  CAS  PubMed  Google Scholar 

  • Maeser D, Gruener RF, Huang RS (2021) oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform 22:bbab60

    Article  Google Scholar 

  • Morgenstern DA, Bagatell R, Cohn SL, Hogarty MD, Maris JM, Moreno L, Park JR, Pearson AD, Schleiermacher G, Valteau-Couanet D, London WB, Irwin MS (2019) The challenge of defining “ultra-high-risk” neuroblastoma. Pediatr Blood Cancer 66:e27556

    Article  PubMed  Google Scholar 

  • Nicolai S, Pieraccioli M, Peschiaroli A, Melino G, Raschella G (2015) Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death Dis 6:e2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  PubMed  PubMed Central  Google Scholar 

  • Schubert M, Klinger B, Klunemann M, Sieber A, Uhlitz F, Sauer S, Garnett MJ, Bluthgen N, Saez-Rodriguez J (2018) Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun 9:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith V, Foster J (2018) High-risk neuroblastoma treatment review. Children (Basel) 5:114

    PubMed  Google Scholar 

  • Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, Kaminska B, Huelsken J, Omberg L, Gevaert O, Colaprico A, Czerwinska P, Mazurek S, Mishra L, Heyn H, Krasnitz A, Godwin AK, Lazar AJ, Cancer Genome Atlas Research, Stuart NJM, Hoadley KA, Laird PW, Noushmehr H, Wiznerowicz M (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173:338-354e315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valter K, Zhivotovsky B, Gogvadze V (2018) Cell death-based treatment of neuroblastoma. Cell Death Dis 9:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Wienke J, Dierselhuis MP, Tytgat GAM, Kunkele A, Nierkens S, Molenaar JJ (2021) The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer 144:123–150

    Article  CAS  PubMed  Google Scholar 

  • Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26:1572–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) 2:100141

    CAS  PubMed  Google Scholar 

  • Yeku OO, Longo DL (2023) CAR T cells for neuroblastoma. N Engl J Med 388:1328–1331

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, Trevino V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, Mills GB, Verhaak RG (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612

    Article  PubMed  Google Scholar 

  • Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R (2021) Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 41:961–1021

    Article  PubMed  Google Scholar 

  • Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, Zhou R, Qiu W, Huang N, Sun L, Li X, Bin J, Liao Y, Shi M, Liao W (2021) IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol 12:687975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Liu Y, Zhang Y, Meng L, Wei J, Wang B, Wang H, Xin Y, Dong L, Jiang X (2020) Role and toxicity of radiation therapy in neuroblastoma patients: a literature review. Crit Rev Oncol Hematol 149:102924

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Selina Jansky and Frank Westermann from the German Cancer Research Center for kindly providing single-cell neuroblastoma datasets.

Funding

This work was supported by grants from the Tianjin Health Technology Project (Grant no. 2022QN106).

Author information

Authors and Affiliations

Authors

Contributions

A.Z. performed data analysis and original draft writing; X.L. and J.W. reviewed and edited the manuscript; J.W. performed the study concept and design; J.W. is the guarantor of this work and takes responsibility for the integrity of the data and accuracy of the data analysis. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Xin Li or Jian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

As all data analyzed in this study were obtained from publicly available datasets, no ethics approval form was required for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (EPS 140 KB) Supplementary Figure 1 | Flowchart of the Study

432_2023_5392_MOESM2_ESM.tif

Supplementary file2 (TIF 8716 KB) Supplementary Figure 2 | Expression Distribution of Disulfidptosis-Related Gene Set across Clusters

Supplementary file3 (TIF 1102 KB) Supplementary Figure 3 | Validation of DPI Feasibility Using an External Dataset

432_2023_5392_MOESM4_ESM.tif

Supplementary file4 (TIF 3635 KB) Supplementary Figure 4 | Enrichment Analysis Results of GSEA in DPI-High and DPI-Low Groups

432_2023_5392_MOESM5_ESM.tif

Supplementary file5 (TIF 933 KB) Supplementary Figure 5 | Enhanced Estrogen Signaling Pathway Activity and Drug Sensitivity in High-DPI Neuroblastomas in Validation Cohort

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, A., Li, X. & Wang, J. Integrating bulk-seq and single-cell-seq reveals disulfidptosis potential index associating with neuroblastoma prognosis and immune infiltration. J Cancer Res Clin Oncol 149, 16647–16658 (2023). https://doi.org/10.1007/s00432-023-05392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-05392-9

Keywords

Navigation