Skip to main content

Advertisement

Log in

Machine learning- and WGCNA-mediated double analysis based on genes associated with disulfidptosis, cuproptosis and ferroptosis for the construction and validation of the prognostic model for breast cancer

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Disulfidptosis, a recently discovered cellular death mechanism, has not been extensively studied in relation to breast cancer (BC). Specifically, no previous research has integrated disulfidptosis-related genes (DRGs), cuproptosis-related genes (CRGs), and ferroptosis-related genes (FRGs) to construct a prognostic signature for BC.

Methods

DRGs, CRGs and FRGs with prognostic potential were identified through Cox regression analysis. A predictive model was constructed by intersecting the core genes obtained from unsupervised cluster analysis and weighted correlation network analysis (WGCNA). Differences in chemotherapy drug sensitivity, immune checkpoint levels were analyzed according to different risk score groups. The expression of the core disulfidptosis gene, SLC7A11, was analyzed using immunofluorescence.

Results

Single-cell RNA sequencing analysis revealed differential expression of DRGs in the BC tumor microenvironment. We developed a prognostic model, consisting of six genes, based on machine learning which included unsupervised cluster analysis and Lasso-Cox analysis. An internal training set and a validation set, both derived from the Cancer Genome Atlas-Breast Cancer (TCGA-BRCA) database, GSE20685 and GSE42568 as external validation sets all verified the model's validity. The low-risk group exhibited increased sensitivity to paclitaxel. Additionally, the high-risk group demonstrated significantly higher expression of tumor mutation burden and microsatellite instability compared to the low-risk group. A nomogram confirmed that the risk score can be an independent risk factor for BC. Notably, our findings highlighted the impact of SLC7A11 on the BC tumor microenvironment. Immunofluorescence analysis revealed significantly higher expression of SLC7A11 in BC tissues compared to paracancerous tissues.

Conclusion

Multiplex analysis based on DRGs, CRGs and FRGs correlated strongly with BC, providing new insights for developing clinical prognostic tools and designing immunotherapy regimens for BC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to construct and verify the prognosis model can be obtained from TCGA and GEO databases.

References

  • Allen GM, Frankel NW, Reddy NR, Bhargava HK, Yoshida MA, Stark SR, Purl M, Lee J, Yee JL, Yu W et al (2022) Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science 378(6625):eaba1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Min J, Wang F (2022a) Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther 7(1):378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Zhou X, Yang L, Zhou H, Meng M, Zhang L, Li J (2022b) A cuproptosis activation scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma. Comput Biol Med 148:105924

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Li B, Jia F, Li J, Huang H, Ni C, Xia W (2022c) High PANX1 expression leads to neutrophil recruitment and the formation of a high adenosine immunosuppressive tumor microenvironment in basal-like breast cancer. Cancers (basel) 14(14):3369

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Tang L, Huang W, Abisola FH, Zhang Y, Zhang G, Yao L (2023) Identification of a prognostic cuproptosis-related signature in hepatocellular carcinoma. Biol Direct 18(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA (2022) The complex role of tumor-infiltrating macrophages. Nat Immunol 23(8):1148–1156

    Article  CAS  PubMed  Google Scholar 

  • He J, Wang X, Chen K, Zhang M, Wang J (2022) The amino acid transporter SLC7A11-mediated crosstalk implicated in cancer therapy and the tumor microenvironment. Biochem Pharmacol 205:115241

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S-H, Singh SV (2022) The FoxQ1 transcription factor is a novel regulator of electron transport chain complex I subunits in human breast cancer cells. Mol Carcinog 61(3):372–381

    Article  CAS  PubMed  Google Scholar 

  • Kuciauskas D, Dreize N, Ger M, Kaupinis A, Zemaitis K, Stankevicius V, Suziedelis K, Cicenas J, Graves LM, Valius M (2019) Proteomic analysis of breast cancer resistance to the anticancer drug RH1 reveals the importance of cancer stem cells. Cancers (basel) 11(7):972

    Article  CAS  PubMed  Google Scholar 

  • Laumont CM, Banville AC, Gilardi M, Hollern DP, Nelson BH (2022) Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat Rev Cancer 22(7):414–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Roh J-L (2022) SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer. Antioxidants (basel) 11(12):2444

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y (2022) Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 15(1):121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H (2022) Pan-cancer profiles of the cuproptosis gene set. Am J Cancer Res 12(8):4074–4081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G (2021) Breast cancer. Lancet 397(10286):1750–1769

    Article  CAS  PubMed  Google Scholar 

  • Onkar SS, Carleton NM, Lucas PC, Bruno TC, Lee AV, Vignali DAA, Oesterreich S (2023) The great immune escape: understanding the divergent immune response in breast cancer subtypes. Cancer Discov 13(1):23–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S-J, Liu C-M (2023) Chemotherapy for early-stage breast cancer: the more the better? Lancet 401(10384):1243–1245

    Article  PubMed  Google Scholar 

  • Shen Y, Li D, Liang Q, Yang M, Pan Y, Li H (2022) Cross-talk between cuproptosis and ferroptosis regulators defines the tumor microenvironment for the prediction of prognosis and therapies in lung adenocarcinoma. Front Immunol 13:1029092

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    Article  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48

    Article  PubMed  Google Scholar 

  • Song L, Liu Z, Hu H-H, Yang Y, Li TY, Lin Z-Z, Ye J, Chen J, Huang X, Liu D-T et al (2020) Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun 11(1):5842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villodre ES, Hu X, Eckhardt BL, Larson R, Huo L, Yoon EC, Gong Y, Song J, Liu S, Ueno NT et al (2022) NDRG1 in aggressive breast cancer progression and brain metastasis. J Natl Cancer Inst 114(4):579–591

    Article  PubMed  Google Scholar 

  • Wang H, Cheng Y, Mao C, Liu S, Xiao D, Huang J, Tao Y (2021) Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther 29(7):2185–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Guo K, Zhang D, Wang H, Yin J, Cui H, Wu W (2023) Disulfidptosis classification of hepatocellular carcinoma reveals correlation with clinical prognosis and immune profile. Int Immunopharmacol 120:110368

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Wang H, Li X, Huang R, Luo L (2021) Recent progress on targeting ferroptosis for cancer therapy. Biochem Pharmacol 190:114584

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Niu Y, Ma L, Tian L, Ma J (2022) System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J Transl Med 20(1):452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y et al (2021) Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res 40(1):206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Xiao Y, Ding J-H, Jin X, Ma D, Li D-Q, Shi J-X, Huang W, Wang Y-P, Jiang Y-Z et al (2023) Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab 35(1):84–100.e8

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Richardson DR (2023) The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 1878(3):188871

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhou X, Xie F, Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J, Zhang L (2022) Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (lond) 42(2):88–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Zhou C, Ding Y, Duan S (2023) Disulfidptosis: a new target for metabolic cancer therapy. J Exp Clin Cancer Res 42(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu K, Wu Y, He P, Fan Y, Zhong X, Zheng H, Luo T (2022) PI3K/AKT/mTOR-targeted therapy for breast cancer. Cells 11(16):2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Department of Clinical Biobank, Affiliated Hospital of Nantong University for providing pathological specimens and laboratory equipment for this study.

Funding

Grants from Research project on teaching reform of Nantong University (2020B43) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX22_1631) provided funding for the current study.

Author information

Authors and Affiliations

Authors

Contributions

LX devised the study, wrote the report, and carried out the experiment. SW and DZ were in charge of image optimization. The data analysis was carried out by YW and JS. CW, HZ, and QW critically edited the text for key intellectual content. The final manuscript was reviewed and approved by all writers.

Corresponding author

Correspondence to Qingqing Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wang, S., Zhang, D. et al. Machine learning- and WGCNA-mediated double analysis based on genes associated with disulfidptosis, cuproptosis and ferroptosis for the construction and validation of the prognostic model for breast cancer. J Cancer Res Clin Oncol 149, 16511–16523 (2023). https://doi.org/10.1007/s00432-023-05378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-05378-7

Keywords

Navigation