Skip to main content

Advertisement

Log in

Virtual screening reveals aprepitant to be a potent inhibitor of neutral sphingomyelinase 2: implications in blockade of exosome release in cancer therapy

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Exosomes are membrane-derived nano-vesicles upregulated in pathological conditions like cancer. Therefore, inhibiting their release is a potential strategy for the development of more efficient combination therapies. Neutral sphingomyelinase 2 (nSMase2) is a key component in exosome release; however, a clinically safe yet efficient nSMase2 inhibitor remains to be used discovered. Accordingly, we made an effort to identify potential nSMase2 inhibitor(s) among the approved drugs.

Methods

Virtual screening was performed and aprepitant was selected for further investigation. To evaluate the reliability of the complex, molecular dynamics were performed. Finally, using the CCK-8 assay in HCT116 cells, the highest non-toxic concentrations of aprepitant were identified and the nSMase2 activity assay was performed to measure the inhibitory activity of aprepitant, in vitro.

Results

To validate the screening results, molecular docking was performed, and the retrieved scores were in line with the screening results. The root-mean-square deviation (RMSD) plot of aprepitant–nSMase2 showed proper convergence. Following treatment with different concentrations of aprepitant in both cell-free and cell-dependent assays, nSMase2 activity was remarkably decreased.

Conclusion

Aprepitant, at a concentration as low as 15 µM, was able to inhibit nSmase2 activity in HCT116 cells without any significant effects on their viability. Aprepitant is therefore suggested to be a potentially safe exosome release inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abad E, Lyakhovich A (2022) Movement of mitochondria with mutant DNA through extracellular vesicles helps cancer cells acquire chemoresistance. Chem Med Chem 17(4):e202100642

    Article  CAS  PubMed  Google Scholar 

  • Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. https://doi.org/10.1186/s12964-020-0530-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger M, Neth O, Ilmer M, Garnier A, Salinas-Martín MV, de Agustín Asencio JC, von Schweinitz D, Kappler R, Muñoz M (2014) Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J Hepatol 60(5):985–994

    Article  CAS  PubMed  Google Scholar 

  • Bilousova T, Simmons BJ, Knapp RR, Elias CJ, Campagna J, Melnik M, Chandra S, Focht S, Zhu C, Vadivel K (2020) Dual neutral sphingomyelinase-2/acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. ACS Chem Biol 15(6):1671–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt SS, Badshah Y, Shabbir M, Rafiq M (2020) Molecular docking using chimera and autodock vina software for nonbioinformaticians. JMIR Bioinform Biotechnol 1(1):e14232

    Article  Google Scholar 

  • Cetin R, Quandt E, Kaulich M (2021) Functional genomics approaches to elucidate vulnerabilities of intrinsic and acquired chemotherapy resistance. Cells 10(2):260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta A, Kim H, McGee L, Johnson AE, Talwar S, Marugan J, Southall N, Hu X, Lal M, Mondal D (2018) High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: a drug repurposing strategy for advanced cancer. Sci Rep 18(1):8161

    Article  Google Scholar 

  • Dong LF, Rohlena J, Zobalova R, Nahacka Z, Rodriguez AM, Berridge MV, Neuzil J (2023) Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J Cell Biol. https://doi.org/10.1083/jcb.202211044

    Article  PubMed  PubMed Central  Google Scholar 

  • Elsherbini A, Bieberich E (2018) Ceramide and exosomes: a novel target in cancer biology and therapy. Adv Cancer Res 140:121–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figuera-Losada M, Stathis M, Dorskind JM, Thomas AG, Bandaru VVR, Yoo S-W, Westwood NJ, Rogers GW, McArthur JC, Haughey NJ (2015) Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS ONE 10(5):e0124481

    Article  PubMed  PubMed Central  Google Scholar 

  • Hekmatirad S, Moloudizargari M, Moghadamnia AA, Kazemi S, Mohammadnia-Afrouzi M, Baeeri M, Moradkhani F, Asghari MH (2021) Inhibition of exosome release sensitizes U937 cells to PEGylated liposomal doxorubicin. Front Immunol 12:692654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houshyari M, Taghizadeh-Hesary F (2022) Is mitochondrial metabolism a new predictive biomarker for antiprogrammed cell death Protein-1 immunotherapy? JCO Oncol Pract:OP 22:00733

    Google Scholar 

  • Im E-J, Lee C-H, Moon P-G, Rangaswamy GG, Lee B, Lee JM, Lee J-C, Jee J-G, Bae J-S, Kwon T-K (2019) Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat Commun 10(1):1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javid H, Afshari AR, Zahedi Avval F, Asadi J, Hashemy SI (2021) Aprepitant promotes caspase-dependent apoptotic cell death and G2/M arrest through PI3K/Akt/NF-κB axis in cancer stem-like esophageal squamous cell carcinoma spheres. BioMed Res Int 2021:1–12

    Article  Google Scholar 

  • Jin G, Wong ST (2014) Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 19(5):637–644

    Article  PubMed  Google Scholar 

  • Khan FM, Saleh E, Alawadhi H, Harati R, Zimmermann W-H, El-Awady R (2018) Inhibition of exosome release by ketotifen enhances sensitivity of cancer cells to doxorubicin. Cancer Biol Ther 19(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Koch R, Aung T, Vogel D, Chapuy B, Wenzel D, Becker S, Sinzig U, Venkataramani V, von Mach T, Jacob R (2016) Nuclear trapping through inhibition of exosomal export by indomethacin increases cytostatic efficacy of doxorubicin and pixantroneinhibition of exosomal drug export by indomethacin. Clin Cancer Res 22(2):395–404

    Article  CAS  PubMed  Google Scholar 

  • Kosgodage US, Trindade RP, Thompson PR, Inal JM, Lange S (2017) Chloramidine/bisindolylmaleimide-I-mediated inhibition of exosome and microvesicle release and enhanced efficacy of cancer chemotherapy. Int J Mol Sci 18(5):1007

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoud R, Ordóñez-Morán P, Allegrucci C (2022) Challenges for triple negative breast cancer treatment: defeating heterogeneity and cancer stemness. Cancers 14(17):4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moloudizargari M, Asghari MH, Abdollahi M (2018) Modifying exosome release in cancer therapy: how can it help? Pharmacol Res 134:246–256

    Article  CAS  PubMed  Google Scholar 

  • Moloudizargari M, Abdollahi M, Asghari MH, Zimta AA, Neagoe IB, Nabavi SM (2019a) The emerging role of exosomes in multiple myeloma. Blood Rev 38:100595

    Article  CAS  PubMed  Google Scholar 

  • Moloudizargari M, Asghari MH, Mortaz E (2019b) Inhibiting exosomal MIC-A and MIC-B shedding of cancer cells to overcome immune escape: new insight of approved drugs. DARU J Pharm Sci 27(2):879–884

    Article  CAS  Google Scholar 

  • Moloudizargari M, Hekmatirad S, Mofarahe ZS, Asghari MH (2021) Exosomal microRNA panels as biomarkers for hematological malignancies. Curr Probl Cancer 45(5):100726

    Article  PubMed  Google Scholar 

  • Moschoi R, Imbert V, Nebout M, Chiche J, Mary D, Prebet T, Saland E, Castellano R, Pouyet L, Collette Y, Vey N, Chabannon C, Recher C, Sarry JE, Alcor D, Peyron JF, Griessinger E (2016) Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128(2):253–264. https://doi.org/10.1182/blood-2015-07-655860

    Article  CAS  PubMed  Google Scholar 

  • Munoz M, Gonzalez-Ortega A, Salinas-Martín MV, Carranza A, Garcia-Recio S, Almendro V, Covenas R (2014) The neurokinin-1 receptor antagonist aprepitant is a promising candidate for the treatment of breast cancer. Int J Oncol 45(4):1658–1672

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Sawada K, Kinose Y, Yoshimura A, Toda A, Nakatsuka E, Hashimoto K, Mabuchi S, Morishige K-i, Kurachi H (2017) Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells exosomes promote ovarian cancer cell invasion. Mol Cancer Res 15(1):78–92

    Article  CAS  PubMed  Google Scholar 

  • Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X, Chen L (2020) Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res. https://doi.org/10.1038/s41413-020-0100-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Obaidullah AJ, Alanazi MM, Alsaif NA, Alanazi AS, Albassam H, Az A, Alwassil OI, Alqahtani AM, Tareq AM (2022) Network pharmacology-and molecular docking-based identification of potential phytocompounds from Argyreia capitiformis in the treatment of inflammation. Evid-Based Complement Altern Med 2022:1–22

    Article  Google Scholar 

  • Olver I, Shelukar S, Thompson KC (2007) Nanomedicines in the treatment of emesis during chemotherapy: focus on aprepitant. Int J Nanomed 2(1):13–18

    Article  CAS  Google Scholar 

  • Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE, Hill R (2017) Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 36(13):1770–1778

    Article  CAS  PubMed  Google Scholar 

  • Rojas C, Barnaeva E, Thomas AG, Hu X, Southall N, Marugan J, Chaudhuri AD, Yoo S-W, Hin N, Stepanek O (2018) DPTIP, a newly identified potent brain penetrant neutral sphingomyelinase 2 inhibitor, regulates astrocyte-peripheral immune communication following brain inflammation. Sci Rep 8(1):17715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas C, Sala M, Thomas AG, Datta Chaudhuri A, Yoo SW, Li Z, Dash RP, Rais R, Haughey NJ, Nencka R (2019) A novel and potent brain penetrant inhibitor of extracellular vesicle release. Br J Pharmacol 176(19):3857–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saputra EC, Huang L, Chen Y, Tucker-Kellogg L (2018) Combination therapy and the evolution of resistance: the theoretical merits of synergism and antagonism in cancer. Cancer Res 78(9):2419–2431

    Article  CAS  PubMed  Google Scholar 

  • Son B, Lee S, Youn H, Kim E, Kim W, Youn B (2017) The role of tumor microenvironment in therapeutic resistance. Oncotarget 8(3):3933

    Article  PubMed  Google Scholar 

  • Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova I-I (2019) Therapy resistance mediated by exosomes. Mol Cancer 18(1):1–11

    Article  Google Scholar 

  • Taghizadeh-Hesary F, Houshyari M, Farhadi M (2023) Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-023-04592-7

    Article  PubMed  Google Scholar 

  • Tallon C, Bell BJ, Sharma A, Pal A, Malvankar MM, Thomas AG, Yoo S-W, Hollinger KR, Coleman K, Wilkinson EL (2022) Dendrimer-conjugated nSMase2 inhibitor reduces tau propagation in mice. Pharmaceutics 14(10):2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamimi NA, Ellis P (2009) Drug development: from concept to marketing! Nephron Clin Pract 113(3):c125–c131

    Article  CAS  PubMed  Google Scholar 

  • Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang H, Chen X (2019) Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. https://doi.org/10.20517/cdr.2019.10

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeo S, An J, Park C, Kim D, Lee J (2020) Design and characterization of phosphatidylcholine-based solid dispersions of aprepitant for enhanced solubility and dissolution. Pharmaceutics 12(5):407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Y, Li H, Li P, Chen Y, Zhang M, Yuan Z, Zhang Y, Xu Z, Luo G, Fang Y (2021) Exosomes: a new pathway for cancer drug resistance. Front Oncol 11:743556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Babol University of medical sciences research committee for supporting this study.

Funding

This study was supported by Babol University of medical sciences grant number 724132610. Ethics committee approval ID: IR.MUBABOL.REC.1400.138.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MHA and MM; Methodology and Software, SH and SG; Data analysis, MM and AAM; Original draft preparation, SH and HN; Review and editing, MHA; All the authors have read and approved the submitted version.

Corresponding author

Correspondence to Mohammad Hossein Asghari.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moloudizargari, M., Hekmatirad, S., Gharaghani, S. et al. Virtual screening reveals aprepitant to be a potent inhibitor of neutral sphingomyelinase 2: implications in blockade of exosome release in cancer therapy. J Cancer Res Clin Oncol 149, 7207–7216 (2023). https://doi.org/10.1007/s00432-023-04674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04674-6

Keywords

Navigation