Skip to main content

Advertisement

Log in

Machine learning-based immune prognostic model and ceRNA network construction for lung adenocarcinoma

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Lung adenocarcinoma (LUAD) is a malignant tumor with a high lethality rate. Immunotherapy has become a breakthrough in cancer treatment and improves patient survival and prognosis. Therefore, it is necessary to find new immune-related markers. However, the current research on immune-related markers in LUAD is not sufficient. Therefore, there is a need to find new immune-related biomarkers to help treat LUAD patients.

Methods

In this study, a bioinformatics approach combined with a machine learning approach screened reliable immune-related markers to construct a prognostic model to predict the overall survival (OS) of LUAD patients, thus promoting the clinical application of immunotherapy in LUAD. The experimental data were obtained from The Cancer Genome Atlas (TCGA) database, including 535 LUAD and 59 healthy control samples. Firstly, the Hub gene was screened using a bioinformatics approach combined with the Support Vector Machine Recursive Feature Elimination algorithm; then, a multifactorial Cox regression analysis by constructing an immune prognostic model for LUAD and a nomogram to predict the OS rate of LUAD patients. Finally, the regulatory mechanism of Hub genes in LUAD was analyzed by ceRNA.

Results

Five genes, ADM2, CDH17, DKK1, PTX3, and AC145343.1, were screened as potential immune-related genes in LUAD. Among them, ADM2 and AC145343.1 had a good prognosis in LUAD patients (HR < 1) and were novel markers. The remaining three genes screened were associated with poor prognosis in LUAD patients (HR > 1). In addition, the experimental results showed that patients in the low-risk group had better OS rates than those in the high-risk group (P < 0.001).

Conclusion

In this paper, we propose an immune prognostic model to predict OS rate in LUAD patients and show the correlation between five immune genes and the level of immune-related cell infiltration. It provides new markers and additional ideas for immunotherapy in patients with LUAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The results of this study are based on the TCGA Research Network: https://www.cancer.gov/tcga.

References

Download references

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Contributions

XH: Conception and design, acquisition of data, analysis and interpretation of data, drafting the article. YS and CC: Reviewed submitted version of the manuscript. PL and HG: Statistical analysis. XL, WG and CC: Study supervision. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Cheng Chen, Xiaoyi Lv or Wenjia Guo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Su, Y., Liu, P. et al. Machine learning-based immune prognostic model and ceRNA network construction for lung adenocarcinoma. J Cancer Res Clin Oncol 149, 7379–7392 (2023). https://doi.org/10.1007/s00432-023-04609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04609-1

Keywords

Navigation