Skip to main content

Advertisement

Log in

Blocking antibody-mediated phosphatidylserine enhances cancer immunotherapy

  • Review – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Cancer immunotherapy is a major breakthrough in tumor therapy and has been used in monotherapy or combination therapy. However, it has been associated with poor immune tolerance in some patients or immune-related adverse events. Therefore, ideal and reliable tumor elimination strategies are urgently needed to overcome these shortcomings. Phosphatidylserine (PS) is a negatively charged phospholipid, usually present in the inner lobules of eukaryotic cell membranes. Under certain physiological or pathological conditions, PS may be exposed on the outer leaflets of apoptotic cells serving as recognition signals by phagocytes and modulating the immune response. On the contrary, increased exposure of PS in the tumor microenvironment can significantly antagonize the body’s anti-tumor immunity, thereby promoting tumor growth and metastasis. During radiotherapy and chemotherapy, PS-mediated immunosuppression increases the PS levels in necrotic tissue in the tumor microenvironment, further suppressing tumor immunity. PS-targeted therapy is a promising strategy in cancer immunotherapy. It inhibits tumor growth and improves the anti-tumor activity of immune checkpoint inhibitors. A comprehensive understanding of the mechanism of PS-targeted therapy opens up a new perspective for future cancer immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

ADCC:

Antibody-dependent cytotoxicity

Ceacam-1:

Carcinoembryonic Antigen Cell Adhesion Molecule-1

DC:

Dendritic cells

FAS1:

Fascicle protein I

FcRs:

Fc receptors

HMGB1:

High Mobility Group Histone B1

ICIs:

Immune checkpoint inhibitors

IDO:

Indoleamine 2,3-dioxygenase 1

IFN-γ:

Interferon γ

IL-2:

Interleukin 2

1N11:

Monoclonal antibodies

mAbs:

Monoclonal antibodies

MDSCs:

Myeloid-derived suppressor cells

NSCLC:

Non-small cell lung cancer

PS:

Phosphatidylserine

Rac1:

Rac family small GTPase 1

RTKs:

Receptor tyrosine kinases

TAM:

Tyro, Axl, and Mertk

TIM:

T cells, immunoglobulin, and mucin

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

TIL:

Tumor-infiltrating lymphocytes

VCAM-1:

Vascular cell adhesion molecule 1

β2GP1:

β2 Glycoprotein 1

References

  • Anderson AC (2014) Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol Res 2:393–398

    Article  CAS  PubMed  Google Scholar 

  • Bajtay Z, Csomor E, Sandor N, Erdei A (2006) Expression and role of Fc- and complement-receptors on human dendritic cells. Immunol Lett 104:46–52

    Article  CAS  PubMed  Google Scholar 

  • Barrueto L, Caminero F, Cash L, Makris C, Lamichhane P, Deshmukh RR (2020) Resistance to checkpoint inhibition in cancer immunotherapy. Transl Oncol 13:100738

    Article  PubMed  PubMed Central  Google Scholar 

  • Belzile O, Huang X, Gong J, Carlson J, Schroit AJ, Brekken RA, Freimark BD (2018) Antibody targeting of phosphatidylserine for the detection and immunotherapy of cancer. Immunotargets Ther 7:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, Barcinski M, Brekken RA, Huang X, Hutchins JT et al (2016) Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ 23:962–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budhu S, Giese R, Gupta A, Fitzgerald K, Zappasodi R, Schad S, Hirschhorn D, Campesato LF, De Henau O, Gigoux M et al (2021) Targeting phosphatidylserine enhances the anti-tumor response to tumor-directed radiation therapy in a preclinical model of melanoma. Cell Rep 34:108620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burstyn-Cohen T, Maimon A (2019) TAM receptors, phosphatidylserine, inflammation, and cancer. Cell Commun Signal 17:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Calianese DC, Birge RB (2020) Biology of phosphatidylserine (PS): basic physiology and implications in immunology, infectious disease, and cancer. Cell Commun Signal 18:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalasani P, Marron M, Roe D, Clarke K, Iannone M, Livingston RB, Shan JS, Stopeck AT (2015) A phase I clinical trial of bavituximab and paclitaxel in patients with HER2 negative metastatic breast cancer. Cancer Med 4:1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang W, Fa H, Xiao D, Wang J (2020) Targeting phosphatidylserine for cancer therapy: prospects and challenges. Theranostics 10:9214–9229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien CW, Hou PC, Wu HC, Chang YL, Lin SC, Lin SC, Lin BW, Lee JC, Chang YJ, Sun HS, Tsai SJ (2016) Targeting TYRO3 inhibits epithelial-mesenchymal transition and increases drug sensitivity in colon cancer. Oncogene 35:5872–5881

    Article  CAS  PubMed  Google Scholar 

  • Chinnadurai R, Copland IB, Patel SR, Galipeau J (2014) IDO-independent suppression of T cell effector function by IFN-gamma-licensed human mesenchymal stromal cells. J Immunol 192:1491–1501

    Article  CAS  PubMed  Google Scholar 

  • Colli LM, Machiela MJ, Zhang H, Myers TA, Jessop L, Delattre O, Yu K, Chanock SJ (2017) Landscape of combination immunotherapy and targeted therapy to improve cancer management. Cancer Res 77:3666–3671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RS, Jacobsen KM, Wofford AM, DeRyckere D, Stanford J, Prieto AL, Redente E, Sandahl M, Hunter DM, Strunk KE et al (2013) MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J Clin Invest 123:3231–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David C, Nance JP, Hubbard J, Hsu M, Binder D, Wilson EH (2012) Stabilin-1 expression in tumor associated macrophages. Brain Res 1481:71–78

    Article  CAS  PubMed  Google Scholar 

  • Dayoub AS, Brekken RA (2020) TIMs, TAMs, and PS- antibody targeting: implications for cancer immunotherapy. Cell Commun Signal 18:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demarest SJ, Gardner J, Vendel MC, Ailor E, Szak S, Huang F, Doern A, Tan X, Yang W, Grueneberg DA et al (2013) Evaluation of Tyro3 expression, Gas6-mediated Akt phosphorylation, and the impact of anti-Tyro3 antibodies in melanoma cell lines. Biochemistry 52:3102–3118

    Article  CAS  PubMed  Google Scholar 

  • Di Stasi R, De Rosa L, D’Andrea LD (2020) Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discov Today 25:2130–2148

    Article  PubMed  CAS  Google Scholar 

  • Digumarti R, Bapsy PP, Suresh AV, Bhattacharyya GS, Dasappa L, Shan JS, Gerber DE (2014) Bavituximab plus paclitaxel and carboplatin for the treatment of advanced non-small-cell lung cancer. Lung Cancer 86:231–236

    Article  PubMed  Google Scholar 

  • Du W, Yang M, Turner A, Xu C, Ferris RL, Huang J, Kane LP, Lu B (2017) TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci 18:645

    Article  PubMed Central  CAS  Google Scholar 

  • Duan Y, Luo L, Qiao C, Li X, Wang J, Liu H, Zhou T, Shen B, Lv M, Feng J (2019) A novel human anti-AXL monoclonal antibody attenuates tumour cell migration. Scand J Immunol 90:e12777

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Geng Y, Shen L, Zhang Z (2021) Advances on immune-related adverse events associated with immune checkpoint inhibitors. Front Med 15:33–42

    Article  PubMed  Google Scholar 

  • Fendl B, Eichhorn T, Weiss R, Tripisciano C, Spittler A, Fischer MB, Weber V (2018) Differential interaction of platelet-derived extracellular vesicles with circulating immune cells: roles of TAM receptors, CD11b, and phosphatidylserine. Front Immunol 9:2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer K, Voelkl S, Berger J, Andreesen R, Pomorski T, Mackensen A (2006) Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood 108:4094–4101

    Article  CAS  PubMed  Google Scholar 

  • Francis RJ, Kotecha S, Hallett MB (2013) Ca2+ activation of cytosolic calpain induces the transition from apoptosis to necrosis in neutrophils with externalized phosphatidylserine. J Leukoc Biol 93:95–100

    Article  CAS  PubMed  Google Scholar 

  • Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH (2010) TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 235:172–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freimark BD, Gong J, Ye D, Gray MJ, Nguyen V, Yin S, Hatch MM, Hughes CC, Schroit AJ, Hutchins JT et al (2016) Antibody-mediated phosphatidylserine blockade enhances the antitumor responses to CTLA-4 and PD-1 antibodies in melanoma. Cancer Immunol Res 4:531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey B, Gaipl US (2011) The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin Immunopathol 33:497–516

    Article  CAS  PubMed  Google Scholar 

  • Gerber DE, Stopeck AT, Wong L, Rosen LS, Thorpe PE, Shan JS, Ibrahim NK (2011) Phase I safety and pharmacokinetic study of bavituximab, a chimeric phosphatidylserine-targeting monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res 17:6888–6896

    Article  CAS  PubMed  Google Scholar 

  • Gerber DE, Hao G, Watkins L, Stafford JH, Anderson J, Holbein B, Oz OK, Mathews D, Thorpe PE, Hassan G et al (2015) Tumor-specific targeting by Bavituximab, a phosphatidylserine-targeting monoclonal antibody with vascular targeting and immune modulating properties, in lung cancer xenografts. Am J Nucl Med Mol Imaging 5:493–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerber DE, Horn L, Boyer M, Sanborn R, Natale R, Palmero R, Bidoli P, Bondarenko I, Germonpre P, Ghizdavescu D et al (2018) Randomized phase III study of docetaxel plus bavituximab in previously treated advanced non-squamous non-small-cell lung cancer. Ann Oncol 29:1548–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosk S, Moos T, Gottstein C, Bendas G (2008) VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim Biophys Acta 1778:854–863

    Article  CAS  PubMed  Google Scholar 

  • Graham DK, DeRyckere D, Davies KD, Earp HS (2014) The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 14:769–785

    Article  CAS  PubMed  Google Scholar 

  • Gray MJ, Gong J, Hatch MM, Nguyen V, Hughes CC, Hutchins JT, Freimark BD (2016) Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Breast Cancer Res 18:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grilley-Olson JE, Weiss J, Ivanova A, Villaruz LC, Moore DT, Stinchcombe TE, Lee C, Shan JS, Socinski MA (2018) Phase Ib study of bavituximab with carboplatin and pemetrexed in chemotherapy-naive advanced nonsquamous non-small-cell lung cancer. Clin Lung Cancer 19:e481–e487

    Article  CAS  PubMed  Google Scholar 

  • Harding JJ, Moreno V, Bang YJ, Hong MH, Patnaik A, Trigo J, Szpurka AM, Yamamoto N, Doi T, Fu S et al (2021) Blocking TIM-3 in treatment-refractory advanced solid tumors: a phase Ia/b study of LY3321367 with or without an anti-PD-L1 antibody. Clin Cancer Res 27:2168–2178

    Article  CAS  PubMed  Google Scholar 

  • He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch FR (2018) TIM-3, a promising target for cancer immunotherapy. Onco Targets Ther 11:7005–7009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S, Call JA, Klibanov AL, Yan Z, Mandell JW, Ravichandran KS (2013) Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497:263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini H, Li Y, Kanellakis P, Tay C, Cao A, Tipping P, Bobik A, Toh BH, Kyaw T (2015) Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes. Cardiovasc Res 106:443–452

    Article  CAS  PubMed  Google Scholar 

  • Iida Y, Sunami E, Yamashita H, Hiyoshi M, Ishihara S, Yamaguchi H, Inoue A, Makide K, Tsuno NH, Aoki J et al (2015) Phosphatidylserine-specific phospholipase A1 (PS-PLA1) expression in colorectal cancer correlates with tumor invasion and hematogenous metastasis. Anticancer Res 35:1459–1464

    PubMed  Google Scholar 

  • Ishii H, Mori T, Shiratsuchi A, Nakai Y, Shimada Y, Ohno-Iwashita Y, Nakanishi Y (2005) Distinct localization of lipid rafts and externalized phosphatidylserine at the surface of apoptotic cells. Biochem Biophys Res Commun 327:94–99

    Article  CAS  PubMed  Google Scholar 

  • Jie HB, Srivastava RM, Argiris A, Bauman JE, Kane LP, Ferris RL (2017) Increased PD-1(+) and TIM-3(+) TILs during cetuximab therapy inversely correlate with response in head and neck cancer patients. Cancer Immunol Res 5:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal Y, Schmit SL, Frost HR, Amos CI (2020) The tumor microenvironment of colorectal cancer metastases: opportunities in cancer immunotherapy. Immunotherapy 12:1083–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasikara C, Kumar S, Kimani S, Tsou WI, Geng K, Davra V, Sriram G, Devoe C, Nguyen KN, Antes A et al (2017) Phosphatidylserine sensing by TAM receptors regulates AKT-dependent chemoresistance and PD-L1 expression. Mol Cancer Res 15:753–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein ME, Rieckmann M, Sedding D, Hause G, Meister A, Mader K, Lucas H (2021) Towards the development of long circulating phosphatidylserine (PS)- and phosphatidylglycerol (PG)-enriched anti-inflammatory liposomes: is PEGylation effective? Pharmaceutics 13:282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong X, Fu M, Niu X, Jiang H (2020) Comprehensive analysis of the expression, relationship to immune infiltration and prognosis of TIM-1 in cancer. Front Oncol 10:1086

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, Li J, Li F, Tan HB (2020) Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Lett 470:126–133

    Article  CAS  PubMed  Google Scholar 

  • Li J, Gray BD, Pak KY, Ng CK (2019) Targeting phosphatidylethanolamine and phosphatidylserine for imaging apoptosis in cancer. Nucl Med Biol 78–79:23–30

    Article  PubMed  CAS  Google Scholar 

  • Li J, Shayan G, Avery L, Jie HB, Gildener-Leapman N, Schmitt N, Lu BF, Kane LP, Ferris RL (2016) Tumor-infiltrating Tim-3(+) T cells proliferate avidly except when PD-1 is co-expressed: evidence for intracellular cross talk. Oncoimmunology 5:e1200778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lino DOC, Freitas IA, Meneses GC, Martins AMC, Daher EF, Rocha JHC, Silva Junior GB (2019) Interleukin-6 and adhesion molecules VCAM-1 and ICAM-1 as biomarkers of post-acute myocardial infarction heart failure. Braz J Med Biol Res 52:e8658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JF, Wu L, Yang LL, Deng WW, Mao L, Wu H, Zhang WF, Sun ZJ (2018) Blockade of TIM3 relieves immunosuppression through reducing regulatory T cells in head and neck cancer. J Exp Clin Cancer Res 37:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long L, Zhang X, Chen F, Pan Q, Phiphatwatchara P, Zeng Y, Chen H (2018) The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 9:176–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Yang L, Yao D, Wu X, Li J, Liu X, Deng L, Huang C, Wang Y, Li D, Liu J (2017) Tumor antigen-specific CD8(+) T cells are negatively regulated by PD-1 and Tim-3 in human gastric cancer. Cell Immunol 313:43–51

    Article  CAS  PubMed  Google Scholar 

  • Luster TA, He J, Huang X, Maiti SN, Schroit AJ, de Groot PG, Thorpe PE (2006) Plasma protein beta-2-glycoprotein 1 mediates interaction between the anti-tumor monoclonal antibody 3G4 and anionic phospholipids on endothelial cells. J Biol Chem 281:29863–29871

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Flores JA, Serrano M, Perez D, Lora D, Paz-Artal E, Morales JM, Serrano A (2015) Detection of circulating immune complexes of human IgA and beta 2 glycoprotein I in patients with antiphospholipid syndrome symptomatology. J Immunol Methods 422:51–58

    Article  CAS  PubMed  Google Scholar 

  • Masuda A, Yoshida M, Shiomi H, Morita Y, Kutsumi H, Inokuchi H, Mizuno S, Nakamura A, Takai T, Blumberg RS, Azuma T (2009) Role of Fc receptors as a therapeutic target. Inflamm Allergy Drug Targets 8:80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokdad AA, Zhu H, Beg MS, Arriaga Y, Dowell JE, Singal AG, Yopp AC (2019) Efficacy and safety of bavituximab in combination with sorafenib in advanced hepatocellular carcinoma: a single-arm, open-label, phase II clinical trial. Target Oncol 14:541–550

    Article  PubMed  Google Scholar 

  • Murphy KA, Erickson JR, Johnson CS, Seiler CE, Bedi J, Hu P, Pluhar GE, Epstein AL, Ohlfest JR (2014) CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol 192:224–233

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Akiba H, Takeda K, Kojima Y, Hashiguchi M, Azuma M, Yagita H, Okumura K (2009) Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113:3821–3830

    Article  CAS  PubMed  Google Scholar 

  • Naqvi AR, Fordham JB, Nares S (2016) MicroRNA target Fc receptors to regulate Ab-dependent Ag uptake in primary macrophages and dendritic cells. Innate Immun 22:510–521

    Article  CAS  PubMed  Google Scholar 

  • Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ (2011) Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res 71:3540–3551

    Article  CAS  PubMed  Google Scholar 

  • Ocana-Guzman R, Torre-Bouscoulet L, Sada-Ovalle I (2016) TIM-3 regulates distinct functions in macrophages. Front Immunol 7:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okimoto RA, Bivona TG (2015) AXL receptor tyrosine kinase as a therapeutic target in NSCLC. Lung Cancer (auckl) 6:27–34

    Google Scholar 

  • Park M, Kang KW (2019) Phosphatidylserine receptor-targeting therapies for the treatment of cancer. Arch Pharm Res 42:617–628

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Kim SY, Jung MY, Bae DJ, Kim IS (2008) Epidermal growth factor-like domain repeat of stabilin-2 recognizes phosphatidylserine during cell corpse clearance. Mol Cell Biol 28:5288–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Kim SY, Kang KB, Kim IS (2010) Adaptor protein GULP is involved in stabilin-1-mediated phagocytosis. Biochem Biophys Res Commun 398:467–472

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Bae DJ, Kim MJ, Piao ML, Kim IS (2012) Extracellular low pH modulates phosphatidylserine-dependent phagocytosis in macrophages by increasing stabilin-1 expression. J Biol Chem 287:11261–11271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Yun Y, Lim JS, Kim MJ, Kim SY, Kim JE, Kim IS (2016) Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nat Commun 7:10871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Kim IS (2019) Stabilin receptors: role as phosphatidylserine receptors. Biomolecules 9:387

    Article  CAS  PubMed Central  Google Scholar 

  • Pistillo MP, Carosio R, Banelli B, Morabito A, Mastracci L, Ferro P, Varesano S, Vene R, Poggi A, Roncella S (2020) IFN-gamma upregulates membranous and soluble PD-L1 in mesothelioma cells: potential implications for the clinical response to PD-1/PD-L1 blockade. Cell Mol Immunol 17:410–411

    Article  CAS  PubMed  Google Scholar 

  • Quan H, Kim Y, Park HC, Yang HC (2018) Effects of phosphatidylserine-containing supported lipid bilayers on the polarization of macrophages. J Biomed Mater Res A 106:2625–2633

    Article  CAS  PubMed  Google Scholar 

  • Ran S, Gao B, Duffy S, Watkins L, Rote N, Thorpe PE (1998) Infarction of solid Hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res 58:4646–4653

    CAS  PubMed  Google Scholar 

  • Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140

    CAS  PubMed  Google Scholar 

  • Ran S, He J, Huang X, Soares M, Scothorn D, Thorpe PE (2005) Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 11:1551–1562

    Article  CAS  PubMed  Google Scholar 

  • Romero D (2016) Immunotherapy: PD-1 says goodbye, TIM-3 says hello. Nat Rev Clin Oncol 13:202–203

    Article  PubMed  Google Scholar 

  • Sabatos-Peyton CA, Nevin J, Brock A, Venable JD, Tan DJ, Kassam N, Xu F, Taraszka J, Wesemann L, Pertel T et al (2018) Blockade of Tim-3 binding to phosphatidylserine and CEACAM1 is a shared feature of anti-Tim-3 antibodies that have functional efficacy. Oncoimmunology 7:e1385690

    Article  PubMed  Google Scholar 

  • Samuel MS, Lundgren-May T, Ernst M (2007) Identification of putative targets of DNA (cytosine-5) methylation-mediated transcriptional silencing using a novel conditionally active form of DNA methyltransferase 3a. Growth Factors 25:426–436

    Article  CAS  PubMed  Google Scholar 

  • Serinkan BF, Gambelli F, Potapovich AI, Babu H, Di Giuseppe M, Ortiz LA, Fabisiak JP, Kagan VE (2005) Apoptotic cells quench reactive oxygen and nitrogen species and modulate TNF-alpha/TGF-beta1 balance in activated macrophages: involvement of phosphatidylserine-dependent and -independent pathways. Cell Death Differ 12:1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Sharma B, Kanwar SS (2018) Phosphatidylserine: a cancer cell targeting biomarker. Semin Cancer Biol 52:17–25

    Article  CAS  PubMed  Google Scholar 

  • Shurin MR, Potapovich AI, Tyurina YY, Tourkova IL, Shurin GV, Kagan VE (2009) Recognition of live phosphatidylserine-labeled tumor cells by dendritic cells: a novel approach to immunotherapy of skin cancer. Cancer Res 69:2487–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stasi I, Cappuzzo F (2014) Profile of bavituximab and its potential in the treatment of non-small-cell lung cancer. Lung Cancer (auckl) 5:43–50

    Google Scholar 

  • Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S, Huang L, Vijh S, Johnson S, Bonvini E, Koenig S (2007) Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 67:8882–8890

    Article  CAS  PubMed  Google Scholar 

  • Stewart CA, Metheny H, Iida N, Smith L, Hanson M, Steinhagen F, Leighty RM, Roers A, Karp CL, Muller W, Trinchieri G (2013) Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J Clin Invest 123:4859–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Zhang L, Zhang W, Liu Y, Chen B, Zhao S, Li W, Wang L, Ye L, Jia K et al (2020) Expression of PD-1 and PD-L1 on tumor-infiltrating lymphocytes predicts prognosis in patients with small-cell lung cancer. Onco Targets Ther 13:6475–6483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang SQ, Tang LL, Mao YP, Li WF, Chen L, Zhang Y, Guo Y, Liu Q, Sun Y, Xu C, Ma J (2020) The pattern of time to onset and resolution of immune-related adverse events caused by immune checkpoint inhibitors in cancer: a pooled analysis of 23 clinical trials and 8,436 patients. Cancer Res Treat. https://doi.org/10.4143/crt.2020.790

    Article  PubMed  PubMed Central  Google Scholar 

  • Tormoen GW, Blair TC, Bambina S, Kramer G, Baird J, Rahmani R, Holland JM, McCarty OJT, Baine MJ, Verma V et al (2020) Targeting MerTK enhances adaptive immune responses after radiation therapy. Int J Radiat Oncol Biol Phys 108:93–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Twarda-Clapa A, Labuzek B, Krzemien D, Musielak B, Grudnik P, Dubin G, Holak TA (2018) Crystal structure of the FAS1 domain of the hyaluronic acid receptor stabilin-2. Acta Crystallogr D Struct Biol 74:695–701

    Article  CAS  PubMed  Google Scholar 

  • van der Meer JH, van der Poll T, van’t Veer C (2014) TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis. Blood 123:2460–2469

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Multhoff G (1887) Accomplices of the hypoxic tumor microenvironment compromising antitumor immunity: adenosine, lactate, acidosis, vascular endothelial growth factor, potassium ions, and phosphatidylserine. Front Immunol 2017:8

    Google Scholar 

  • Wang T, Chu Z, Lin H, Jiang J, Zhou X, Liang X (2014) Galectin-3 contributes to cisplatin-induced myeloid derived suppressor cells (MDSCs) recruitment in Lewis lung cancer-bearing mice. Mol Biol Rep 41:4069–4076

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Yu T, Sun TT, Feng Y, Xiong H, Fang JY (2020) PD-L1 overexpression on tumor-infiltrating lymphocytes related to better prognosis of colorectal cancer. Clin Lab 66. https://doi.org/10.7754/Clin.Lab.2020.200325

  • Wu G, Ma Z, Cheng Y, Hu W, Deng C, Jiang S, Li T, Chen F, Yang Y (2018) Targeting Gas6/TAM in cancer cells and tumor microenvironment. Mol Cancer 17:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang B, Wu Q, Zhou YL, Guo X, Ge J, Fu J (2018) Immune-related adverse events from combination immunotherapy in cancer patients: a comprehensive meta-analysis of randomized controlled trials. Int Immunopharmacol 63:292–298

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Jiang Y, Zhang H, Chen L, Luo P, Li L, Zhao J, Lv F, Zou D, Zhang Y, Jing Z (2019) Clinicopathological implications of TIM3(+) tumor-infiltrating lymphocytes and the miR-455-5p/Galectin-9 axis in skull base chordoma patients. Cancer Immunol Immunother 68:1157–1169

    Article  PubMed  Google Scholar 

  • Zhou X, Yao Z, Yang H, Liang N, Zhang X, Zhang F (2020) Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med 18:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohar DN, Shoenfeld Y (2018) Antibody targeting of phosphatidylserine for detection and immunotherapy of cancer. Immunotargets Ther 7:51–53

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Li Zhang for helping me with the writing process.

Funding

This work was supported by grants from the Training Project of Key Talents of Youth Medicine in Jiangsu province, China (No.QNRC2016330) and High-level talent “six one projects” top talent scientific research project of Jiangsu Province (No.LGY2019034).

Author information

Authors and Affiliations

Authors

Contributions

JZ and ZD drafted the manuscript in detail. JZ and CY researched the literatures and drew figures. ZD and CY counted and plotted the diagram and table. DT and DW critically revised the article for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dong Tang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Dai, Z., Yan, C. et al. Blocking antibody-mediated phosphatidylserine enhances cancer immunotherapy. J Cancer Res Clin Oncol 147, 3639–3651 (2021). https://doi.org/10.1007/s00432-021-03792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-021-03792-3

Keywords

Navigation