Skip to main content

Advertisement

Log in

Regulation of prognosis-related Siglecs in the glioma microenvironment

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The anti-inflammatory environment of glioma reduces the efficacy of immunotherapies. Therefore, it is vital to transform the immunosuppressive microenvironment of glioma into a pro-inflammatory environment. Sialic acid-binding immunoglobulin-type lectins (Siglecs) can serve as immune checkpoint targets that enhance the anti-tumor immune response. However, the roles of Siglecs in the glioma microenvironment are unknown. This study was conducted to identify targets to inhibit the anti-inflammatory environment to improve therapeutic outcomes in patients with glioma.

Methods

We analyzed the regulatory effect of prognosis-related Siglecs identified from data available in The Cancer Genome Atlas database (TCGA) and China Glioma Genome Atlas Data portal on the immunosuppressive microenvironment of glioma. The effects of prognosis-related Siglecs on the glioma microenvironment were investigated by determining the Pearson correlation coefficients of the Siglecs in transcriptome data from the TCGA database.

Results

Siglec-1, -9, -10, and -14 were closely associated with the prognosis of patients with glioma. The expression of these four Siglecs was significantly increased in the high-risk group and positively correlated with anti-inflammatory cytokine levels in the glioma microenvironment.

Conclusion

Our study provides insights into the effects of prognosis-related Siglecs in glioma immunotherapy, suggesting that targeted prognosis-related Siglecs can modify the microenvironment of glioma and improve the sensitivity of patients with glioma to immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

PD-1:

Programmed cell death protein 1

NK:

Natural killer cells

HIV:

Human immunodeficiency virus

HBV:

Hepatitis B virus

References

  • Backer R et al (2010) Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells. Proc Natl Acad Sci USA 107:216–221

    Article  CAS  PubMed  Google Scholar 

  • Barkal AA et al (2019) CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572:392–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornhöfft KF et al (2018) Siglecs: a journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Dev Comp Immunol 86:219–231

    Article  PubMed  CAS  Google Scholar 

  • Cassetta L et al (2019) Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunol Immunother 68:687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WC et al (2012) Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169. PLOS ONE 7:e39039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X et al (2013) Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 123:4595–4611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuntova P et al (2018) Genetically engineered T-cells for malignant glioma: overcoming the barriers to effective immunotherapy. Front Immunol 9:3062

    Article  CAS  PubMed  Google Scholar 

  • Crane CA et al (2014) Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc Natl Acad Sci USA 111:12823–12828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crocker PR et al (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis LM (2001) Brain tumors. N Engl J Med 344:114–123

    Article  CAS  PubMed  Google Scholar 

  • Delgado-López PD et al (2017) Diffuse low-grade glioma: a review on the new molecular classification, natural history and current management strategies. Clin Transl Oncol 19:931–944

    Article  PubMed  Google Scholar 

  • Duan S et al (2020) Siglecs as immune cell checkpoints in disease. Annu Rev Immunol 38:365–395

    Article  CAS  PubMed  Google Scholar 

  • Eisele G et al (2006) TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129:2416–2425

    Article  PubMed  Google Scholar 

  • Fecci PE et al (2019) The current state of immunotherapy for gliomas: an eye toward the future. J Neurosurg 131:657–666

    Article  PubMed  Google Scholar 

  • Hiruma Y et al (2013) Impaired osteoclast differentiation and function and mild osteopetrosis development in Siglec-15-deficient mice. Bone 53:87–93

    Article  CAS  PubMed  Google Scholar 

  • Ho VK et al (2014) Changing incidence and improved survival of gliomas. Eur J Cancer 50:2309–2318

    Article  PubMed  Google Scholar 

  • Hudak JE et al (2014) Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol 10:69–75

    Article  CAS  PubMed  Google Scholar 

  • Jandus C et al (2014) Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest 124:1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DR et al (2012) Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359–364

    Article  CAS  PubMed  Google Scholar 

  • Kamran N et al (2018) Current state and future prospects of immunotherapy for glioma. Immunotherapy 10:317–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaas M et al (2012) Sialoadhesin in recognition of self and non-self. Semin Immunopathol 34:353–364

    Article  CAS  PubMed  Google Scholar 

  • Klopfleisch R (2016) Macrophage reaction against biomaterials in the mouse model—phenotypes, functions and markers. Acta Biomater 43:3–13

    Article  CAS  PubMed  Google Scholar 

  • Komohara Y et al (2017) Possible functions of CD169-positive sinus macrophages in lymph nodes in anti-tumor immune responses. Cancer Sci 108:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Läubli H et al (2014) Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci USA 111:14211–14216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim M et al (2018) Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol 15:422–442

    Article  CAS  PubMed  Google Scholar 

  • Lin CH et al (2021) Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc 120:5–24

    Article  CAS  PubMed  Google Scholar 

  • Lindau D et al (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HF et al (2012) Altered polarization, morphology, and impaired innate immunity germane to resident peritoneal macrophages in mice with long-term type 2 diabetes. J Biomed Biotechnol 2012:867023

    PubMed  PubMed Central  Google Scholar 

  • Liu G et al (2013) Modulation of macrophage activation and programming in immunity. J Cell Physiol 228:502–512

    Article  CAS  PubMed  Google Scholar 

  • Louis DN et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Louis DN et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  • Lübbers J et al (2018) Modulation of immune tolerance via siglec-sialic acid interactions. Front Immunol 9:2807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macauley MS et al (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14:653–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO et al (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  • Mills CD et al (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    Article  CAS  PubMed  Google Scholar 

  • Motzer RJ et al (2020) Nivolumab versus everolimus in patients with advanced renal cell carcinoma: updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 126:4156–4167

    Article  CAS  PubMed  Google Scholar 

  • Murray PJ et al (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nduom EK et al (2015) Immunosuppressive mechanisms in glioblastoma. Neuro Oncol 17:9–14

    Article  CAS  Google Scholar 

  • Paulson JC et al (2012) Siglecs as sensors of self in innate and adaptive immune responses. Ann NY Acad Sci 1253:37–48

    Article  CAS  PubMed  Google Scholar 

  • Pillai S et al (2012) Siglecs and immune regulation. Annu Rev Immunol 30:357–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigamonti E et al (2014) Macrophage plasticity in skeletal muscle repair. Biomed Res Int 2014:560629

    Article  PubMed  PubMed Central  Google Scholar 

  • Robert C et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532

    Article  CAS  PubMed  Google Scholar 

  • Romagné F et al (2009) Preclinical characterization of 1–7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 114:2667–2677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruffin N et al (2019) Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors. Proc Natl Acad Sci USA 116:21685–21693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santegoets KCM et al (2019) Expression profiling of immune inhibitory Siglecs and their ligands in patients with glioma. Cancer Immunol Immunother 68:937–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao JY et al (2016) Siglec-7 defines a highly functional natural killer cell subset and inhibits cell-mediated activities. Scand J Immunol 84:182–190

    Article  CAS  PubMed  Google Scholar 

  • Stanczak MA et al (2018) Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J Clin Invest 128:4912–4923

    Article  PubMed  PubMed Central  Google Scholar 

  • Umansky V et al (2019) Interactions among myeloid regulatory cells in cancer. Cancer Immunol Immunother 68:645–660

    Article  PubMed  Google Scholar 

  • van den Bent MJ (2014) Practice changing mature results of RTOG study 9802: another positive PCV trial makes adjuvant chemotherapy part of standard of care in low-grade glioma. Neuro Oncol 16:1570–1574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Dinther D et al (2018) Functional CD169 on macrophages mediates interaction with dendritic cells for CD8(+) T cell cross-priming. Cell Rep 22:1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Varchetta S et al (2013) Sialic acid-binding Ig-like lectin-7 interacts with HIV-1 gp120 and facilitates infection of CD4pos T cells and macrophages. Retrovirology 10:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varki A et al (2006) Siglecs–the major subfamily of I-type lectins. Glycobiology 16:1r–27r

    Article  CAS  PubMed  Google Scholar 

  • Verschuere T et al (2011) Galectin-1 and immunotherapy for brain cancer. Expert Rev Neurother 11:533–543

    Article  CAS  PubMed  Google Scholar 

  • Wang YC et al (2010) Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70:4840–4849

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2019) Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med 25:656–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wielgat P et al (2021) The paired siglecs in brain tumours therapy: the immunomodulatory effect of dexamethasone and temozolomide in human glioma in vitro model. Int J Mol Sci 22:1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong YS et al (2014) Increased expression of Siglec-1 on peripheral blood monocytes and its role in mononuclear cell reactivity to autoantigen in rheumatoid arthritis. Rheumatology (Oxford) 53:250–259

    Article  CAS  Google Scholar 

  • Yang I et al (2011) Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: evidence of distinct immunological microenvironments that reflect tumor biology. J Neurosurg 115:505–511

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara K et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z et al (2017) Increased expression of Siglec-9 in chronic obstructive pulmonary disease. Sci Rep 7:10116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao D et al (2018) Decreased Siglec-9 expression on natural killer cell subset associated with persistent HBV replication. Front Immunol 9:1124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y et al (2020) Nivolumab plus ipilimumab versus pembrolizumab as chemotherapy-free, first-line treatment for PD-L1-positive non-small cell lung cancer. Clin Transl Med 10:107–115

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Professor Dong Zhou for his guidance, Mr. Zhaohua Zeng for his help, and Dr. Yong Yang and Dr. Peng Wang for their financial support.

Funding

This work was financially supported by Natural Science Foundation of China (NO.81901250), High-level Hospital Construction Project of Guangdong Province of China (NO. DFJH201924) and Natural Science Foundation of Guangdong Province of China (NO.2018A0303130236).

Author information

Authors and Affiliations

Authors

Contributions

HL and JZ: extracted the data; RM: methodology, formal analysis, recourses; LZ and GL: software; YY: project administration, funding acquisition; PW: supervision; RM: writing-original draft. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Dong Zhou.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5 KB) Supplementary Fig. 1 Forest plot of the multivariate Cox regression analysis in glioma.

432_2021_3762_MOESM2_ESM.pdf

Supplementary file2 (PDF 427 KB) Supplementary Fig. 2 Risk score analysis of Siglecs family four-gene prognostic model in CGGA glioma cohort. (A) Survival analysis according to risk score; (B) ROC analysis; (C) heat map; (D) risk score and (E)survival status of patients.

432_2021_3762_MOESM3_ESM.pdf

Supplementary file3 (PDF 323 KB) Supplementary Fig. 3 Risk score of glioma patients with different clinical characteristics (A-E). Multivariate Cox regression analyses of clinical characteristics and risk score associated with OS in the TCGA cohort(F). Multivariate Cox regression analyses of clinical characteristics and risk score associated with OS in the CGGA cohort(G).

432_2021_3762_MOESM4_ESM.pdf

Supplementary file4 (PDF 457 KB) Supplementary Fig. 4 Validation in CGGA. (A)The immune landscapes of high- and low-risk groups. (B) Comparison of immune cell infiltration between high- and low-risk groups.

432_2021_3762_MOESM5_ESM.pdf

Supplementary file5 (PDF 470 KB) Supplementary Fig.5 Analysis of immune cell infiltration. (A) The immune landscapes of IDH-mutant and IDH-wildtype groups. (B) Comparison of immune cell infiltration between IDH-mutant and IDH-wildtype groups.

432_2021_3762_MOESM6_ESM.pdf

Supplementary file6 (PDF 470 KB) Supplementary Fig.6 (A) The immune landscapes of 1p/19q-codel and 1p/19q non-codel groups. (B) Comparison of immune cell infiltration between 1p/19q-codel and 1p/19q non-codel groups.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, R., Zhou, L., Yang, Y. et al. Regulation of prognosis-related Siglecs in the glioma microenvironment. J Cancer Res Clin Oncol 147, 3343–3357 (2021). https://doi.org/10.1007/s00432-021-03762-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-021-03762-9

Keywords

Navigation