Skip to main content

Advertisement

Log in

Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of VEGFR2-targeted CD-TK-loaded cationic nanobubbles in the treatment of bladder cancer

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

The CD-TK double suicide gene has become an effective therapy for bladder cancer. A novel molecular-targeted ultrasound (US) method has been developed to precisely guide nanobubbles loaded with this gene to regions within bladder tumor cells and is widely used due to its efficiency in delivering drugs to the target tumor.

Methods

Uniform nanoscaled nanobubbles loaded with CD-TK double suicide gene were developed using a thin-film hydration sonication, carbodiimide chemistry approaches, and electrostatic adsorption methods.

Results

In the present study, we synthesized CD-TK double suicide gene-loaded cationic nanobubbles conjugated with anti-VEGFR2 that can bind with VEGFR2-positive cells. Fluorescence and flow cytometry evidence show that CD-TK double suicide gene-loaded nanobubbles were successfully developed. CD-TK-CNBs delivered via US-mediated nanobubble destruction (UMND) enhanced transfection efficiency, overexpression of CD-TK double suicide gene, and tumor cell apoptosis, and inhibited tumor cell growth in vitro.

Conclusions

These CD-TK-CNBs may become a novel treatment for bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Materials are available upon request.

Abbreviations

UMND:

Ultrasound-mediated nanobubble destruction

CD:

Cytosine deaminase

US:

Ultrasound

5-FC:

5-Fluorine cytosine

TK:

Thymine kinase gene

GCV:

Ganciclovir

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

(DSPE-PEG 2000)-COOH:

Carboxyl-modified1,2-distearoyl-sn-glycero-3-phosphoetha-nolamine

References

  • Amer MH (2014) Gene therapy for cancer: present status and future perspective[J]. Mol Cell Ther 2:27

    PubMed  PubMed Central  Google Scholar 

  • Bruix J, Gores GJ, Mazzaferro V (2014) Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 63:844–855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brujan EA (2004) The role of cavitation microjets in the therapeutic applications of ultrasound. Ultrasound Med Biol 30(3):381–387

    CAS  PubMed  Google Scholar 

  • Cao HQ, Meng XM, Liu DQ et al (2004) Killing effect of coexpressing cytosine deaminase and thymidine kinase on rat vascular smooth muscle cells [J]. Chin Med J (Engl) 117(10):1464–1470

    CAS  Google Scholar 

  • Carrio M, Visa J, Cascante A et al (2002) Intratumoral activation of cyclophosphamide by retroviral transfer of the cytochrome P450 2B1 in a pancreatic tumor model. Combination with the HSV-tk/GCV system. J Gene Med 4:141–149

    PubMed  Google Scholar 

  • Celli JP, Spring BQ, Rizvi I et al (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110(5):2795–2838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZY, Sun XF, Liu JQ et al (2012) Augmentation of transgenic expression by ultrasound mediated liposome nanobubbles destruction [J]. Mol Med Rep 5:964–970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MC, Lee CF, Huang WH et al (2013) Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells. Biochem Pharmacol 85(9):1278–1287

    CAS  PubMed  Google Scholar 

  • Chen MC, Hsu WL, Chang WL et al (2017) Antiangiogenic activity of phthalides-enriched Angelica Sinensis extract by suppressing WSB-1/pVHL/HIF-1α/VEGF signaling in bladder cancer. Sci Rep. 7(1):5376

    PubMed  PubMed Central  Google Scholar 

  • Cheng K, Sano M, Jenkins C et al (2018) Synergistically enhancing therapeutic effect of radiation therapy with radiation activatable and reactive oxygen species-releasing nanostructures. ACS Nano 12(5):4946–4958

    CAS  PubMed  Google Scholar 

  • Chira S, Jackson CS, Oprea I et al (2015) Progresses towards safe and efficient gene therapy vectors [J]. Oncotarget 6:30675–30703

    PubMed  PubMed Central  Google Scholar 

  • Du L, Jin Y, Zhou W, Zhao J (2011) Ultrasound-triggered drug release and enhanced anticancer effect of doxorubicin-loaded poly (d, l-lactide-co-glycolide)-methoxy-poly(ethylene glycol) nanodroplets. Ultrasound Med Biol 37:1252–1258

    PubMed  Google Scholar 

  • Fischer U, Steffens S, Frank S et al (2005) Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells [J]. Oncogene 24:1231–1243

    CAS  PubMed  Google Scholar 

  • Hayashi S, Mizuno M, Yoshida J et al (2009) Effect of sonoporation on cationic liposome mediated IFN beta gene therapy for metastatic hepatic tumors of murine colon cancer [J]. Cancer Gene Ther 16:638–643

    CAS  PubMed  Google Scholar 

  • Heath JR, Davis ME (2008) Nanotechnology and cancer. Annu Rev Med 59:251–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Nishino T, Baba O et al (2009) MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Ultrasound Med Biol 35(5):847–860

    Google Scholar 

  • Hu C, Zhang R, Jiang D (2019) TMEM16A as a potential biomarker in the diagnosis and prognosis of lung cancer. Arch Iran Med. 22(1):32–38

    PubMed  Google Scholar 

  • Karshafian R, Bevan PD, Williams R et al (2009) Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med Biol 35(5):847–860

    PubMed  Google Scholar 

  • Li XH, Zhou P, Wang LH et al (2012) The targeted gene (KDRP-CD/TK) therapy of breast cancer mediated by SonoVue and ultrasound irradiation in vitro [J]. Ultrasonics 52:186–189

    CAS  PubMed  Google Scholar 

  • Li J, Zhou P, Li L, Zhang Y et al (2016) Effects of cationic nanobubbles carrying CD/TK double suicide gene and αVβ3 integrin antibody in human hepatocellular carcinoma HepG2 cells [J]. PLoS One 11:e0158592

    PubMed  PubMed Central  Google Scholar 

  • Lv Y, Cao Y, Li P et al (2017) Ultrasound-triggered destruction of folate-functionalized mesoporous silica nanoparticle-loaded microbubble for targeted tumor therapy. Adv Healthc Mater 6(18):1700354

    Google Scholar 

  • Obrien T, Cranston D, Fuggle S et al (1995) Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res 55:510–513

    CAS  Google Scholar 

  • Pahle J, Walther W (2016) Vectors and strategies for nonviral cancer gene therapy [J]. Expert Opin Biol Ther 16:443–461

    CAS  PubMed  Google Scholar 

  • Park H, Yang J, Lee J, Haam S et al (2009) Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3(10):2919–2926

    CAS  PubMed  Google Scholar 

  • Shang H, Wu B, Liang X et al (2019) Evaluation of therapeutic effect of targeting nanobubbles conjugated with NET-1 siRNA by shear wave elastography: an in vivo study of hepatocellular carcinoma bearing mice model. Drug Deliv 26(1):944–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Google Scholar 

  • Tang Q, He X, Liao H et al (2012) Ultrasound nanobubbles contrast agent-mediated suicide gene transfection in the treatment of hepatic cancer [J]. Oncol Lett 4:970–972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vago R, Collico V, Zuppone S et al (2016) Nanoparticle-mediated delivery ofsuicidegenesin cancertherapy. Pharmacol Res. 111:619–641

    CAS  PubMed  Google Scholar 

  • Verma A, Degrado J, Hittelman AB et al (2011) Effect of mitomycin C on concentrations of vascular endothelial growth factor and its receptors in bladder cancer cells and in bladders of rats intravesically instilled with mitomycin C. BJU Int 107(7):1154–1161

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhou K, Huang G et al (2014) A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat Mater 13:204–212

    CAS  PubMed  Google Scholar 

  • Wilhelm S, Tavares AJ, Dai Q et al (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 1:16014

    CAS  Google Scholar 

  • Wirth T, Ylä-Herttuala S (2014) Gene therapy used in cancer treatment. Biomedicines 2(2):149–162

    PubMed  PubMed Central  Google Scholar 

  • Wirth T, Parker N, Ylä-Herttuala S (2013) History of gene therapy [J]. Gene 25:162–169

    Google Scholar 

  • Wood AK, Sehgal CM (2015) A review of low-intensity ultrasound for cancer therapy [J]. Ultrasound Med Biol 41:905–928

    PubMed  PubMed Central  Google Scholar 

  • Wu M, Wang Y, Wang Y et al (2017) Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer [J]. Int J Nanomedicine 12:5313–5330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Zhao H, Guo L et al (2018) Ultrasound mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamertargeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer. Drug Deliv 25(1):226–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Xie Z, Zhou Y et al (2015) Experimental endostatin-GFP gene transfection into human retinal vascular endothelial cells using ultrasound-targeted cationic nanobubbles destruction [J]. Mol Vis 21:930–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Su H, Sun W et al (2018) Dual chemodrug-loaded single-walled carbon nanohorns for multimodal imaging-guided chemo-photothermal therapy of tumors and lung metastases. Theranostics 8(7):1966–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura I, Suzuki S, Tadakuma T et al (2001) Suicide gene therapy on LNCaP human prostate cancer cells. Int J Urol 8:S5–S8

    CAS  PubMed  Google Scholar 

  • You HB, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Google Scholar 

  • Zarogoulidis P, Darwiche K, Sakkas A et al (2013) Suicide gene therapy for cancer–current strategies [J]. J Genet Syndr Gene Ther 4:16849

    PubMed  PubMed Central  Google Scholar 

  • Zhou S, Li S, Liu Z et al (2010) Ultrasound-targeted nanobubbles destruction mediated herpes simplex virus-thymidine kinase gene treats hepatoma in mice [J]. J Exp Clin Cancer Res 29:170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou SJ, Li SW, Wang JJ et al (2012) High-intensity focused ultrasound combined with herpes simplex virus thymidine kinase gene-loaded ultrasound-targeted nanobubbles improved the survival of rabbits with VX2 liver tumor [J]. J Gene Med 14:570–579

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was approved by The Animal Ethics Committee of Chongqing Medical University and the ARRIVE guidelines followed for the welfare of the animals.

Funding

The present work was sponsored by the National Science Foundation of China No. 81650003, Research on the Frontiers and Application of Chongqing Science and Technology Commission No. cstc2015jcyjA10030, Key Medical Scientific Research Project of Chongqing Municipal Health department No. 2012-1-037, and the Science and Technology Project of Chongqing Yuzhong District No. 20130117, Project of Science and Technology Innovation Foundation of Zhongnan Hospital of Wuhan University No. znpy2018021.

Author information

Authors and Affiliations

Authors

Contributions

CH and RG Z conceived of and designed the study. CH, MW, JW, and DP J performed the experiments. CH, JW, and RG Z analyzed and interpreted the data. CH wrote the manuscript. RG Z and JW revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ronggui Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Jiang, D., Wu, M. et al. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of VEGFR2-targeted CD-TK-loaded cationic nanobubbles in the treatment of bladder cancer. J Cancer Res Clin Oncol 146, 1415–1426 (2020). https://doi.org/10.1007/s00432-020-03160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-020-03160-7

Keywords

Navigation