Skip to main content

Advertisement

Log in

Targeted nanobubbles in low-frequency ultrasound-mediated gene transfection and growth inhibition of hepatocellular carcinoma cells

  • Original Article
  • Published:
Tumor Biology

Abstract

The use of SonoVue combined with ultrasound exposure increases the transfection efficiency of short interfering RNA (siRNA). The objective of this study was to prepare targeted nanobubbles (TNB) conjugated with NET-1 siRNA and an antibody GPC3 to direct nanobubbles to hepatocellular carcinoma cells. SMMC-7721 human hepatocellular carcinoma cells were treated with six different groups. The transfection efficiency and cellular apoptosis were measured by flow cytometry. The protein and messenger RNA (mRNA) expression were measured by Western blot and quantitative real-time PCR, respectively. The migration and invasion potential of the cells were determined by Transwell analysis. The results show that US-guided siRNA-TNB transfection effectively enhanced gene silencing. In summary, siRNA-TNB may be an effective delivery vector to mediate highly effective RNA interference in tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pang RW, Joh JW, Johnson PJ, Monden M, Pawlik TM, Poon RT. Biology of hepatocellular carcinoma. Ann Surg Oncol. 2008;15(4):962–71. doi:10.1245/s10434-007-9730-z.

    Article  PubMed  Google Scholar 

  2. Lopez PM , Villanueva A, Llovet JM. Systematic review: evidence-based management of hepatocellular carcinoma—an updated analysis of randomized controlled trials. Aliment Pharmacol Ther. 2006;23(11):1535–47(13).

    Article  Google Scholar 

  3. Ferrara KW, Borden MA, Zhang H. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. Acc Chem Res. 2009;42(7):881–92. doi:10.1021/ar8002442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geis NA, Katus HA, Bekeredjian R. Microbubbles as a vehicle for gene and drug delivery: current clinical implications and future perspectives. Curr Pharm Des. 2012;18(15):2166–83(18).

    Article  CAS  PubMed  Google Scholar 

  5. Wang DS, Panje C, Pysz MA, Paulmurugan R, Rosenberg J, SS G, et al. Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer. Radiology. 2012;264(3):721–32.

    Article  Google Scholar 

  6. Lentacker I, De Geest BG, Vandenbroucke RE, Peeters L, Demeester J, De Smedt SC, et al. Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir. 2006;22(17):7273–8. doi:10.1021/la0603828.

    Article  CAS  PubMed  Google Scholar 

  7. Chang S, Guo J, Sun J, Zhu S, Yan Y, Zhu Y. Targeted microbubbles for ultrasound mediated gene transfection and apoptosis induction in ovarian cancer cells. Ultrason Sonochem. 2013;20(1):171–9.

    Article  CAS  PubMed  Google Scholar 

  8. Villanueva FS, Jankowski RJ, Klibanov S, Pina ML, Alber SM, Watkins SC, et al. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation. 1998;98(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  9. Zarnitsyn V, Rostad CA, Prausnitz MR. Modeling transmembrane transport through cell membrane wounds created by acoustic cavitation. Biophys J. 2008;95(9):4124–38. doi:10.1529/biophysj.108.131664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cosgrove D. Ultrasound contrast agents: an overview. Eur J Radiol. 2006;60(3):324–30. doi:10.1016/j.ejrad.2006.06.022.

    Article  PubMed  Google Scholar 

  11. Hancock HA, Smith LH, Cuesta J, Durrani AK, Angstadt M, Palmeri ML, et al. Investigations into pulsed high-intensity focused ultrasound-enhanced delivery: preliminary evidence for a novel mechanism. Ultrasound Med Biol. 2009;35(10):1722–36. doi:10.1016/j.ultrasmedbio.2009.04.020.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sirsi SR, Hernandez SL, Zielinski L, Blomback H, Koubaa A, Synder M, et al. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release Off J Control Release Soc. 2012;157(2):224–34. doi:10.1016/j.jconrel.2011.09.071.

    Article  CAS  Google Scholar 

  13. Sun L, Huang CW, Wu J, Chen KJ, Li SH, Weisel RD, et al. The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. Biomaterials. 2013;34(8):2107–16. doi:10.1016/j.biomaterials.2012.11.041.

    Article  CAS  PubMed  Google Scholar 

  14. Chen ZY, Lin Y, Yang F, Jiang L, Ge S. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles. Cardiovasc Ultrasound. 2013;11:11. doi:10.1186/1476-7120-11-11.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Han X, Cheng W, Jing H, Zhang JW, Tang LL. Neuroepithelial transforming protein 1 short interfering RNA-mediated gene silencing with microbubble and ultrasound exposure inhibits the proliferation of hepatic carcinoma cells in vitro. J Ultrasound Med Off J Am Inst Ultrasound Med. 2012;31(6):853–61.

    Google Scholar 

  16. Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng. 2007;9:415–47. doi:10.1146/annurev.bioeng.8.061505.095852.

    Article  CAS  PubMed  Google Scholar 

  17. Krupka TM, Solorio L, Wilson RE, Wu H, Azar N, Exner AA. Formulation and characterization of echogenic lipid-Pluronic nanobubbles. Mol Pharm. 2010;7(1):49–59. doi:10.1021/mp9001816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.

    Article  CAS  PubMed  Google Scholar 

  19. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95(8):4607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guzman HR, McNamara AJ, Nguyen DX, Prausnitz MR. Bioeffects caused by changes in acoustic cavitation bubble density and cell concentration: a unified explanation based on cell-to-bubble ratio and blast radius. Ultrasound Med Biol. 2003;29(8):1211–22.

    Article  PubMed  Google Scholar 

  21. Filmus J, Selleck SB. Glypicans: proteoglycans with a surprise. J Clin Invest. 2001;108(4):497–501. doi:10.1172/jci13712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Di Tommaso L, Franchi G, Park YN, Fiamengo B, Destro A, Morenghi E, et al. Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology. 2007;45(3):725–34. doi:10.1002/hep.21531.

    Article  CAS  PubMed  Google Scholar 

  23. Baumhoer D, Tornillo L, Stadlmann S, Roncalli M, Diamantis EK, Terracciano LM. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am J Clin Pathol. 2008;129(6):899–906. doi:10.1309/hcqwpwd50xhd2dw6.

    Article  PubMed  Google Scholar 

  24. Llovet JM, Chen Y, Wurmbach E, Roayaie S, Fiel MI, Schwartz M, et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology. 2006;131(6):1758–67. doi:10.1053/j.gastro.2006.09.014.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu ZW, Friess H, Wang L, Abou-Shady M, Zimmermann A, Lander AD, et al. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut. 2001;48(4):558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zittermann SI, Capurro MI, Shi W, Filmus J. Soluble glypican 3 inhibits the growth of hepatocellular carcinoma in vitro and in vivo. Int J C J Int Cancer. 2010;126(6):1291–301. doi:10.1002/ijc.24941.

    CAS  Google Scholar 

  27. Serru V, Dessen P, Boucheix C, Rubinstein E. Sequence and expression of seven new tetraspans. Biochim Biophys Acta. 2000;1478(1):159–63.

    Article  CAS  PubMed  Google Scholar 

  28. Chen L, Wang Z, Zhan X, Li DC, Zhu YY, Zhu J. Association of NET-1 gene expression with human hepatocellular carcinoma. Int J Surg Pathol. 2007;15(4):346–53. doi:10.1177/1066896907306083.

    Article  CAS  PubMed  Google Scholar 

  29. Du J, Shi QS, Sun Y, Liu PF, Zhu MJ, Du LF, et al. Enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly l-lysine nanoparticles loading platelet-derived growth factor BB small interfering RNA by ultrasound and/or microbubbles to rat retinal pigment epithelium cells. J Gene Med. 2011;13(6):312–23. doi:10.1002/jgm.1574.

    Article  CAS  PubMed  Google Scholar 

  30. Chen Z, Liang K, Liu J, Xie M, Wang X, Lu Q, et al. Enhancement of survivin gene downregulation and cell apoptosis by a novel combination: liposome microbubbles and ultrasound exposure. Med Oncol (Northwood, London, England). 2009;26(4):491–500. doi:10.1007/s12032-008-9161-0.

    Article  CAS  Google Scholar 

  31. Wang DS, Panje C, Pysz MA, Paulmurugan R, Rosenberg J, Gambhir SS, et al. Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer. Radiology. 2012;264(3):721–32. doi:10.1148/radiol.12112368.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Castle J, Butts M, Healey A, Kent K, Marino M, Feinstein SB. Ultrasound-mediated targeted drug delivery: recent success and remaining challenges. Am J Phys Heart Circ Phys. 2013;304(3):H350–7. doi:10.1152/ajpheart.00265.2012.

    CAS  Google Scholar 

  33. Endo-Takahashi Y, Negishi Y, Kato Y, Suzuki R, Maruyama K, Aramaki Y. Efficient siRNA delivery using novel siRNA-loaded bubble liposomes and ultrasound. Int J Pharm. 2012;422(1–2):504–9. doi:10.1016/j.ijpharm.2011.11.023.

    Article  CAS  PubMed  Google Scholar 

  34. Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P, Julg B, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016. doi:10.1093/nar/gkw159.

  35. Li H, Shi J, Huang NJ, Pishesha N, Natarajan A, Eng JC, et al. Efficient CRISPR-Cas9 mediated gene disruption in primary erythroid progenitor cells. Haematologica. 2016. doi:10.3324/haematol.2015.135723.

    Google Scholar 

  36. Yuan M, Webb E, Lemoine NR, Wang Y. CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses. Viruses. 2016;8(3). doi:10.3390/v8030072.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Cheng.

Ethics declarations

Conflicts of interest

None

Grant support

This study was financially supported by the National Natural Science Foundation of China (#81371568).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Qiao, Q., Han, X. et al. Targeted nanobubbles in low-frequency ultrasound-mediated gene transfection and growth inhibition of hepatocellular carcinoma cells. Tumor Biol. 37, 12113–12121 (2016). https://doi.org/10.1007/s13277-016-5082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5082-2

Keywords

Navigation